Steve Suehring, Tim Converse, and Joyce Park

PHP6 |
and MySQL

Explore PHP syntax,
datatypes, and functions

Create database-driven,
dynamic Web sites

Master server-side

Web programming

P

The book you need to succeed!

PHP 6 and
MySQL® 6
Bible

PHP 6 and
MySQL" 6
Bible

Steve Suehring
Tim Converse

Joyce Park

WILEY
Wiley Publishing, Inc.

PHP 6 and MySQL 6 Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-38450-3

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.
PHP 6 and MySQL 6 bible / Steve Suehring.
p. cm.
Includes index.
ISBN 978-0-470-38450-3 (pbk.)
1. PHP (Computer program language) 2. MySQL (Electronic resource) I. Title.
QAT76.73.P224594 2009
005.2'762 — dc22
2008048198

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. MySQL is a registered
trademark of MySQL AB in the United States, European Union, and other countries. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

About the Authors

Steve Suehring is a technology consultant with a diverse business and computing background.
Steve’s extensive experience enables him to work cross-functionally within organizations to help
create computing architectures that fit the business need. Steve has written several books and mag-
azine articles and contributed to many others. Steve has spoken internationally at user groups and
conventions. When he has the chance, Steve plays just about any sport or any musical instrument,
some with better success than others.

Tim Converse has written software to recommend neckties, answer questions about space sta-
tions, pick value stocks, and make simulated breakfast. He has an M.S. in Computer Science from
the University of Chicago, where he taught several programming classes. He is now an engineering
manager in the Web search group at Yahoo!.

Joyce Park has an M.A. in history from the University of Chicago, and has worked for several
Silicon Valley startups including Epinions, KnowNow, and Friendster. She is a co-lead of the
Mod-pubsub Open Source project.

Credits

Acquisitions Editor Vice President and Executive Publisher
Jenny Watson Barry Pruett

Development Editor Associate Publisher

Christopher J. Rivera Jim Minatel

Technical Editor Project Coordinator, Cover

Aaron Saray Lynsey Stanford

Production Editor Compositor

Rachel McConlogue Jeffrey Wilson, Happenstance Type-O-Rama
Copy Editor Proofreader

Foxxe Editorial Services Publication Services, Inc.

Editorial Manager Indexer

Mary Beth Wakefield Ted Laux

Production Manager Cover Illustration

Tim Tate Joyce Haughey

Vice President and Executive Group Publisher ~ Cover Designer
Richard Swadley Michael E. Trent

Acknowledgments

People sometimes ask me how many books I've written. I never have the answer. You see, I've con-
tributed to well over a dozen (maybe two dozen or more) books in one form or another, be it a chap-
ter or two here, a section there, a rewrite of an existing title with much new material, a revision of
another edition where the existing material is already pretty good (as was the case for this book), or
an original, authored work. The short answer is: I don’t know. It’s really somewhat difficult to claim
that I, alone, wrote a book. At best I put some words down into a word processor and several other
people look them over, edit them, change them for both technical and grammatical usage, and the
end result is my name on the cover or somewhere in the book, or sometimes not at all.

This brings me to the difficulty at hand. I've written a sufficient number books that writing
acknowledgments is becoming a bit mundane. Sure, I'll thank my wife, Rebecca, and son, Jakob,
for their patience while I wrote this. I'll thank my family for their continued support. I'll thank
the Tueschers, Heins, Leus, and Guthries. I'll thank Jason Keup and Aaron Saray, too. I'll thank
my agent Neil Salkind at Studio B., Jim Oliva and John Eckendorf, and the 90fm staff along with
Nightmare Squad.

Of course, I'll thank Tim and Rob @ Partners, and Jay, Deb, and Brian, and Andy Hale and Eliot
Irons and the SecAdmin team. Kyle Mac always gets mad if I don’t include him. There are lot of
people at Knob Hill who deserve thanking, and the like. And I'll always thank Mark Little and
meek, Pat Dunn, AJ Prowant, and Andy Berkvam. But it’s the people that I don’t thank that always
find me, asking why their name isn't in this book. With that in mind, I'll stop here and let them
find me and hope that I write another book where I'll remember to include them. Just a hint:
Everyone who was thanked here has paid me.

INETOAUCTION ... XXXV

Part I: IntroducingPHPo 1

Chapter 1: Why PHP and MySQL? ..ot 3
Chapter 2: Server-Side SCTIPUINE OVETVIEWciiiiiiiiiiiieit oo 11
Chapter 3: Getting Started with PHP ... 19
Chapter 4: Learning PHP Syntax and Variablesccococoiiiiiiiii e 33
Chapter 5: Learning PHP Control Structures and FUnctionscccocooioiiininiiiee 59
Chapter 6: Passing Information with PHP...............oi e 99
Chapter 7: Learning PHP String Handling.................ccooii e 113
Chapter 8: Learning ATTAYS.......c.ooviiiiiiiiiiiiioiit it 131
Chapter 9: Learning PHP Number Handling ... 153
Chapter 10: PHP GOLChas.ooiiiiiiiiiiiii e 165

Part Il: MySQL Database Integration 183

Chapter 11: Introducing Databases and MySQL.............ccccooiiiiiiiiiiiiiii e 185
Chapter 12: Installing MySQL........c.ooiiiiiiiiiii e 189
Chapter 13: Learning Structured Query Language (SQL)cooooiiiiiiiniiiiiiiiiieee 193
Chapter 14: Learning Database Administration and Design ... 207
Chapter 15: Integrating PHP and MySQL..........c.ccooiiiiiiiiie e 219
Chapter 16: Performing Database QUETIESc.oooiiiiiiiiiiiiiiii i 237
Chapter 17: Integrating Web Forms and Databases.................ccoociiiiiiiiiiiiiiii 253
Chapter 18: Improving Database Efficiencycoccooooiiiiiiiii 279
Chapter 19: MySQL GOLCRASoviiiiiii oo 295

Partlll: More PHP ittt ittt ittt neeea.. 309

Chapter 20: Introducing Object-Oriented PHPcoooiiiiiiiiii e 311
Chapter 21: Advanced Array FUNCHONSoviiiiiiiiit i 357
Chapter 22: Examining Regular EXPressions..........ocoooiiiiiiiiiiiiiii e 371
Chapter 23: Working with the FileSyStemm............ccocioiiiiiiiiiii e, 391
Chapter 24: Working with Cookies and SeSSIONS.ccoiiiiiiiiiiiiiiiie e 409
Chapter 25: Learning PHP TYPeSooiiiiiiiiiiiiie oo 433
Chapter 26: Learning PHP Advanced FUNCHONSccooiiiiiiiiiiiiic e, 443
Chapter 27: Performing Math with PHP ... 455
Chapter 28: Securing PHP ...t 471
Chapter 29: Learning PHP Configurationcccooiiiiiiiiiiiiieii e 483

ix

Contents at a Glance

Chapter 30: Handing Exceptions with PHP ... 497
Chapter 31: Debugging PHP Programs.............cccccciiiiiiiiiiiiiiii e 511
Chapter 32: Learning PHP Style..........ccoooiiiiiiiiiiiiiii e 525

PartIV:OtherDatabasescivvivivieeneeeen.. 549

Chapter 33: Connecting PHP and PostgreSQLcoocooiiiiiiiiiii i 551
Chapter 34: Using PEAR DB with PHP ... 567
Chapter 35: An Overview of OTaCle ..ot 575
Chapter 36: An Introduction to SQLILEoiiiiiiiiiiiiii e 605

Part V: ConnectionS . . . v oo v i vttt itieeereneneenensesss. 011

Chapter 37: Sending E-Mail with PHP ... 613
Chapter 38: Integrating PHP and Java..............ccoiiiiiiiiiiiii e 619
Chapter 39: Integrating PHP and JavaSCriptccocioiiiiiiiiiiiiiii e 631
Chapter 40: Integrating PHP and XMLcccooiiiiiiiii i 647
Chapter 41: Creating and Consuming Web Services with PHP..................i 675
Chapter 42: Creating Graphics with PHP ... 689

Part VI: Case Studiesoviiiiirirnennnnennena 713

Chapter 43: Developing a Weblog with PHP ... 715
Chapter 441 A Trivia GaINEcoociiiiiiiiiiii i 727
Chapter 45: Data Visualization with Venn Diagramscocoooioiiiiiiiiniiiiiiec e 771
Appendix A: PHP for C PrOZIAMITIETSoouiiiiiiiieiiiiic et 795
Appendix B: PHP for Perl Hackers............coooiiiiiiiiii e 801
Appendix C: PHP for HTML COAETSouiiiiiiiiiiiii e 809
Appendix D: PHP RESOUTICES ..ottt 817
Appendix Er PEAR L...iiiii i 829

INtroduction. . . .o vttt it it it ie ittt eetneenneeee s XXXV

Part I: Introducing PHP 1
Chapter : Why PHPand MySQL?ot 3
WHaL IS PHP? Lo 3
WHhat IS MySQLY ..o 4
Deciding on a Web Application Platform..............cocoiiiiiiiiii e 4
O e 4
ES@ O USE.....iiit et 5
HTML-embeddednessccoooiiiiiiiii e
Cross-platform compatibility
SEADIIILY .o
MaANY EXEETISIOTIS ...t
Fast feature development......................
NOU PrOPrietarycceeeeeiviieeiiicaeiieeene
Strong user communities......................
SUIIIIIIATY ¢ttt

Chapter 2: Server-Side Scripting Overviewocoon.. . 11

Static HTML ..o 11
Client-Side TeChNOIOZIESouiiii i 13
SeTVeT-SIAE SCTIPUITLE ...ttt 15
What Is Server-Side Scripting Good FOT? ..ot 17
SUIIIIIIATY . .ot 18
Chapter 3: Getting Started withPHP19
INStAllINg PHP ..o
Installation PrOCEAUIESouiiiit it
Installing PHP on CentOS...........
Installing PHP on Debian.............
Installing PHP from sourcecocooiriinn,
Microsoft Windows and Apache
Other Web SETVETSoiiiiiiiiiii e
Development LOOLSuiiiiiiiiiii e
WRAE'S 10 COTIE? ... 27
Your HTML Is Already PHP-Compliant!...............c.oooiiiiiiiiiiiiii e 27

Contents

Escaping from HTML ... 28
Canonical PHP tagsc.ocooiiiiiiiiii i 28
Hello WOTld ..o, 28
Jumping in and out of PHP modecoooiiiiiiiiiiii e 30
INCIUAING fILES ..ot 30
SUIMIMIATY ..o 32
Chapter 4: Learning PHP Syntax and Variables
PHP IS FOTZIVINE ..o
HTML Is Not PHP ...
PHP’s Syntax Is C-Like ...

PHP is whitespace INSeNSItiVeocooviiiiiiiiiic e
PHP is sometimes case SENSILIVEccoiiiiiiiiiiiiiiii e
Statements are expressions terminated by semicolons
Expressions are combinations of tokens
Expressions are evaluatedcoocooiiiiiiiii e
Precedence, associativity, and evaluation order
Expressions and types
Assignment expressions

Reasons for expressions and statements
Braces make blocks
COMMIMICTIES ...
C-style multiline COMMENLS. ..o,
Single-line comments: # and //
VATTADIES ...
PHP variables are Perl-like ...
Declaring variables (or not)
Assigning variables ...
Reassigning variables
Unassigned variables
Default values ..o
Checking assignment with isset
Variable SCOPE..........c.ocoviiiiiiiiii
Functions and variable scope
You can switch modes if you want
COMSTANILS. ...
Types in PHP: Don’t Worry, Be Happy ...
No variable type declarationsccooiiiiiiiiiiiiiii
AUtomatic tyPe COMVETSIONot
Types assigned by contextccoccooiiiiiiriin.
Type Summary
The Simple Typesc..........
IIEEERTS ..
Read formats

xii

Contents

DOUDIES. . 47
Read fOTTNATS ... 48

BOOLCATIS ... 49
BOOLEAN COMSTATITS ... 49
Interpreting other types as Booleans...............cocooiiiiiiiiiiiiiiiiee 49
EXamples ..o

SEHNGS .o
Singly quoted SLTINESociiiiiiiiiii e
Doubly quoted strings
Single versus double quotation marks..............ccocoooiiiiiiiiii 53
Variable interpolation
NEWIINES 111 SUTIIES ...t
LIIMIIES o

Variables and strings
HTML and linebreaks
SUITIITIATY ¢

Chapter 5: Learning PHP Control Structures and Functions.............. 59

BOO0leaN EXPIESSIOTIS. ...ttt 60
BOOlEAM COMSLATILS ...t 60
LOGICAL OPETALOTS ...t 60

Precedence of logical OpPeratorscoocooiiiiiiiiiii 61
Logical operators ShOTt-CITCUILovviiiiii e 62
ComPATISON OPETALOTS ...ttt
Operator precedence
String comparison...............
The ternary operator.....................

Branching..........ccocooiiiiiiniiin.

LS e
Else attaChment............cooooiiiii e
ELSeif o

SWILCR ..

LLOOPITIZ ..
Bounded loops versus unbounded loops

LOOPING @XATIIPLES ...ttt
A bounded for 100D ..o
An unbounded while l0Opooiiiiiii
Break and CONUINUEooiiiiiiiii e

Contents

A note on INANIE LOOPSouviiiiiiiii e
Alternate CONLIOl SYNTAXES ...ttt
Terminating Execution ...
Using FUNCLONS ...

Return values versus side effects............cooiiiiiiiiiii
Function Documentation..........................

Headers in documentation..............

Finding function documentation....
Defining Your OWI FUNCUHOMS.iiiiiiiii it

What 15 @ FUNCHON? ..o 86

Function definition SYTLAXoioiiiiiiiiii it

Function definition eXample.............ocoooiiiiiiiiie

Formal parameters versus actual parameters

Argument number MiSMatChes.............ocviiii i

TOO feW arGUIMENIES. ..o
TOO MANY ATZUIMIETILS ...t
Functions and Variable Scope

Global versus local..........

Static variables................

EXCEPUIONS ...
FUNCHOT SCOPC...oiiiii i

Include and TeQUITE ...

Including only OMNCeoooiiiiiii i
The include Path.........oocoiiiii

RECUTSION ...t e

SUITIIIIATY ¢ttt ettt

Chapter 6: Passing Information withPHP

HTTP IS STALELESS. ...t
GET Arguments........cccoocvvvviieviiienicnien.
A Better Use for GET-Style URLs
POST ATGUIMIETILS ...t
Formatting Form Variables. ..o
Consolidating forms and form handlers ...
PHP Superglobal ATTAYScooiiiiiiiiiiii e
SUIMIITIATY ..

Chapter 7: Learning PHP String Handling.

Strings in PHP ...
Interpolation with curly braces................cc
Characters and string iNdeXesccooiiiiiiiii
SN OPETALOTS ...
Concatenation and assignment
The heredoc syntax..........cccceeveennn

String Functions.........ccccooeeoviiiiiiiionn.

INSPECUNE SITITIES ...t

Xiv

Contents

Finding characters and substrings..............ccccocoiiiiiiiiiii 118
Comparison and searching.............ccocoiiiiiiiiiiiiii i 120
SEATCHING ...t 120
SUbSLIING SEIECTION. ...ttt 121
String cleanup fUNCHONSoiiiiiiii e 123
String replacement
Case functionsccocccvvieennnn.
strtolower() ..ooooveeeeeeeee
strtoupper()
UCHITSO) 1
UCWOTAS ().
ESCaping fUNCHOMS ..ot 127
Printing and OULPUL ...t 128
SUIIIIIIATY ¢t 130

Chapter 8: Learning Arrays.o vviiiin it enenennenenenns 131

The Uses Of ATTAYS. ..ot 131
WHhat Are PHP ATTAYS? L.ttt 132
CIEALTLE ATTAYS ...ttt
Direct assignment.........................
The array() construct...................
Specifying indices using array() ...
Functions returning arrayscoooiiiiiiii e
Retrieving Values.o
Retrieving by indeX...........ooiiiii i
The TiSt() CONSIIUCT ..o
Multidimensional ATTAYSooiiiiiiii it
INSPECHIIE ATTAYS ...t
Deleting fTOM ATTAYS ..ottt
LEETATIONY ...
Support for iteration
Using iteration functions
Our favorite iteration method: foreach.......................
Iterating with current() and next()ocooiiiiiiiiii e
Starting over With TeSet()ooiiiiiiiiiii i
Reverse order with end() and prev() ..o
Extracting keys with key ().
Empty values and the each() function ...
Walking with array_walk().............ooi
SUIMIMATY ..

Chapter 9: Learning PHP Number Handling

INUMETICAL TYPES .ot
Mathematical Operators...............c.c.......
Arithmetic operators.....................
Arithmetic operators and types

XV

XVi

Contents

INCTEMENTINE OPETALOTS. ...ttt
ASSIZNIMENE OPETALOTS ...ttt
COMPATISON OPETALOTS ...ttt
Precedence and parenthesescocoooiiiiiiiii
Simple Mathematical FUNCHONS ..o
Randomnesscccocooioiiiiiiii
Seeding the generator ..o
Example: Making a random selection..........................
SUITIITIATY ..ottt

Chapter 10: PHP Gotchas. i,

Installation-Related Problems. ...
Symptom: Text of file displayed in browser window
Symptom: PHP blocks showing up as text under HTTP or browser prompts you to save

FLLE 166
Symptom: Server or host not found/Page cannot be displayed 166

Rendering PTrODIEINSioviiiii e
Symptom: Totally blank page..............ocooiioiiiiiiii
Symptom: PHP code showing up in Web browser

Failures to Load Page.............ocooiiiviiiiiiiieee
Symptom: Page cannot be found
Symptom: Failed opening [file] for inclusion

Parse ETTOTS ...
Symptom: PArSe eTTOT TNESSAZEo.vevreirieeiiiiieiitet ettt ettt
The missing SeMICOLONoooiiiiiiii e
INO dOIIAT STZIIS. ...
MOME ISSUES ...
Unescaped quotation marks ...
Unterminated SUTITIESoiiiiiioi oo
Other PArSe TTOT CAUSES.......viiiiiiiiei et

Missing InCludes.ocoooiiiiiiiiiii
Symptom: Include warningccococoovniiin.

Unbound Variables..........c.ccocociiiiiiiiiiiii
Symptom: Variable not showing up in print string.............c.occoeereniviiin
Symptom: Numerical variable unexpectedly zero..............ccocoiiiiniiiii
Causes of unbound variables................ccoociiiiiii

CaSe PIODIEINIS. ...t
SCOPING PTODIEIIIS. ...t

FUnction PTobIems ...
Symptom: Call to undefined function my_function()..
Symptom: Call to undefined function ()c..cocooe.e.
Symptom: Call to undefined function array(Q)..............
Symptom: Cannot redeclare my_function()...........c.ocooioriiiiiiiiii
Symptom: Wrong parameter COUNL.........cuuiiiiiiiiiiiiiiaeiiiei e

Contents

Math Problems ..., 178
Symptom: Division-by-zero Warning............cccocoeoiiiiiiiiiiiiiiiicee 178
Symptom: Unexpected arithmetic result ... 178
Symptom: NaN (0 NAN) ... 178

TAMEOULS ... e 179

SUITIITIATY ... 180

Part Il: MySQL Database Integration 183
Chapter 11: Introducing Databasesand MySQL. 185

WHhat Is @ DAtabase?..........couiiiiiiiiiiii e 185

WHhy @ DAtabDase?co.oiiiiiiiii e 186
Maintainability and scalability ... 186
POTTADIIILY ... 186
Avoiding awkward programmingcocooceiiiiiiiiiii 187
SEATCHING ...t 187

PHP-Supported Databasesccooiiiiiiiiiiiiiii e 187

Our Focus: MySQL......ooi e 188

SUIMMIATY ... 188

Chapter 12: Installing MySQL. oottt 189

Obtaining MySQLoiiiiiiiiii i 189

Installing MySQL 0N LINUX ..ot 189
Installing MySQL Server on Debian and Ubuntu ... 190

Installing MySQL on Microsoft Windowsccocooiiiiiiiiiii e 191
Installing MySQL 0n WINAOWS.c..iiiiiiiiiiiiii e 191

SUIIIIIIATY ¢ttt ettt 191

Chapter 13: Learning Structured Query Language (SQL) 193

Relational Databases and SQLoooiiiii e 193

SQL SANAATAS. ... 194

The Workhorses of SQL...... ..o 194
SELECT Lo 195

Selecting Certain ReCOTASoooiiiiiiiiiii e 195
JOITIS e 196
SUDSELECLS. ... 199
INSERT ..o e 200
UPDATE Lo 200
DELETE 200

Database DESIZIL ..ottt 201

Privileges and SECUTILYooiiiiiiiiiii i 204
Setting database Permissions.............oocciiiiiiiiiiiii 204
Keep database passwords outside the web area ... 205
Learn to make DaCKUPS........ooiiiiiiiiii i 206

SUIMIIIIATY - ettt 2006

Contents

Chapter 14: Learning Database Administration and Design............. 207
Basic MySQL Client COmmMAaS.cooouiiiiiiiiiiiiii oot 208
MySQL User AdMINISITATION ...ttt 209

Local developIment.........c..ooiiiiiiiiii e 211
Standalone Web SILecciiiiiiiiiiii i 211
Shared-hosting Web SIte.............ooiiiiiiiiiii e 211
BACKUPS - 212
REPLHCATIOTL. ... 214
RECOVETY ..o 217
MyiSAMCHK ... 217
MYSALCNECK ... 218
SUITIITIATY .. 218

Chapter 15: Integrating PHPand MySQLot 219
Connecting to MySQL ... 219
Making MySQL QUETIEScuiiiiiiiiiiiii i 221
FetChing Datal SEUSot 222
Getting Data about Dataoooiiiiiiii e 225
Multiple CONMECTIONIS ... ittt 226
Building in Error CheCkingoooiiiiiii i 227
Creating MySQL Databases with PHPcoccoiiiiiiiii e 229

MYSQL AR LYPES ..t 230
MySQL FUNCHOTIS ... 232
SUIIIIIIATY ..ottt 235

Chapter 16: Performing Database Queries.0ou... 237

HTML Tables and Database Tables..............cocoiiiiiiiiiiiiii e 238
OnNe-t0-0NE TAPPIILE ..ottt 238
Example: A single-table displayer..............coccocoiiiiiiiiiii 238
The sample tables ..o 240
Improving the displayer.............ooioiiiiiiii i 241

Displaying column headers................oocooiiiiiiiiiiiii e 242
Error checking ... 242
COSIMELIC ISSULS ...t 242
Displaying arbitrary qUETIEsccociiiiiiiiiiiiiiiiiiiiic e 242

ComPlex MaPPITIZS. ..ottt 245
Multiple queries versus complex printing..............cccocooioiiiiiiiiii e 245
A multiple-query example ... 246
A complex printing eXample............oociiiiiiiiii e 248

Creating the Sample Tablesocoiiiiiiii e 250

SUITIIIIATY ¢ttt 252

Chapter 17: Integrating Web Forms and Databases 253
HITIML FOTIIIS . 253
Basic Form Submission to @ Database.............coooiiiiiiiiiiiiiiii e 254

Xviii

Contents

Self-SUDIMISSION ... 257
Editing Data with an HTML FOTTooociiiiiiiiiiii e 264
TEXT and TEXTAREA ..o 264
CHECKBOX ..o 267
RADIO .o e 269
SELECT Lo 274

Chapter 18: Improving Database Efficiency......................... 279

Connections — Reduce, Reuse, Recycle ..o 279
A bad example: one connection per StateMent............oeevereiriiiiiiieeie e, 280
Multiple results don’t need multiple connections.occooevviiiiiiiiniiiie 281
Persistent CONMECTIONSiiiiiiiii i 282

Indexing and Table DesIZN.........cooiiiiiiiiiiie e 282
TIUAEXITIE ..o 282

What 15 an iNdEX?ooiiiiiii e 282
Indexing tradeoffs ..o 283
PrIMATY KEYS ..ottt 284
Everything including the kitchen sink................. 285
Other types of indexes.............ccoocooiviiiiiiii
Table design..........cccocooiiiiieiinn
Making the Database Work for You.........
It's probably faster than you are
A bad example: looping, NOt TeSLICUNGcooiiiiiiiiiiiiii e, 288
Sorting and aggregatingocoocioioiiiiiiiiiiii i 289
Where possible, use MIN or MAX rather than sorting.....................c..co... 289
Creating date and time flelds...........c.ocooiiiiiiii 290
Finding the last inSerted TOWcoiiiiiiiiiii e 291
SUIMIMATY ... 293
Chapter 19: MySQL Gotchasoiiiiiiiiiiiiiiiinnn.. 295

INO COMIMECTIOM ...

Problems with Privileges

Unescaped QUOteS............ccoovvivinrnnne.

Broken SQL STALEINENTSoiii it
Misspelled names
Comma fAULLS ...
Unquoted SIrNg aTGUINIETIES ...ttt 303
Unbound variables ... 304

Too Little Data, Too Much Data...........coooiiiii e 305

Specific SQL FUNCHOMS. ..ottt 305
mysql_affected_rows() versus mysql_num_rows() 305
mysql_resultQ) ... 306
OCI_Fetch(Q) .ooovioiiiiiiiie 306

Debugging and Sanity Checking 307

SUIMIMIATY ... 308

Xix

Contents

Part 11l: More PHP 309

Chapter 20: Introducing Object-Oriented PHP 311

What Is Object-Oriented Programmming?coocoooioiiiiiiiiiiiie 312
The SIMPLe T Aooviiiiiii i
The procedural approachccocoiiiiiiii
The object-oriented approachocoooiviiiiiii
Elaboration: objects as data tyPesSoociruiiiiiiiiiie et
Elaboration: INheritanceoocoiiiiiiiii e
Elaboration: Encapsulation ...
Elaboration: Constructors and destructors
Terminologyccoooviiiiiiiii
Basic PHP Constructs for OOP.................
DefiNING CLASSES ...t
Accessing member variables ...
CTeatiNG IMSLATICES ...ttt
COnStIruCtor fUNCHONS. ...t
INRETILATICE L.
Overriding fUNCHOMS ..ot
Chained subclassing.............cccocooioiiiiiiiii,
Modifying and assigning objectsccocoocreienn.n.
Scoping i1SSUES......vveviviiiiiiiciie
Advanced OOP Features
Public, Private, and Protected Members
Private MEembeTsocoiiiiiiiii e
Protected MeMDETS ..ot
INEETTACES ...
COTISTATIES. ...
ADSITACT ClASSES ...
Simulating class fUNCHONSoooiiiii e
Calling parent functions................
Calling parent constructorsccccceeveerrenninn
Automatic calls to parent constructors
Simulating method overloading...............ccocoiiiiiiiiiii
SETTALIZALIOTL. ..o
Sleeping and Waking UP ..ot
Serialization gOtChas ...t
INtrospection FUNCHIONSoo.iiiiiiii e
Function OVerVIEW ...
Example: Class genealogy...........ccooiiiiiiiiiiiiiiiiie e
Example: matching variables and DB columns
Example: Generalized test methods.....................o....
Extended Example: HTML FOTTISooiiiiiiiiii e

Contents

Gotchas and TroubleshOOtNE. ..ot 352
Symptom: Member variable has no value in member function............................... 352
Symptom: Parse error, expecting T_VARIABLE 353

OOP Style i PHP ...t
NaMING CONVETIIOTIS ...ttt
Accessor functions...........c............

Designing for inheritance
SUIMMIATY ..

Chapter 21: Advanced Array Functions 357

Transformations 0f ATTAYSooioiiiiiiii e 357
Retrieving keys and values..................ooi 358
Flipping, reversing, and shuffling...................... 359
Merging, padding, slicing, and splicingcoccooiiiiiiiiiiiii 360

Stacks and QUETES ..o 363

Translating between Variables and ATTAYSccociiiiiiiiiiiii e 365

SOTTITIZ 1ot 366

Printing Functions for Visualizing ATTaysccociiiiiiiiiiii e 367

SUIIIIIIATY ¢ttt 369

Chapter 22: Examining Regular Expressions. 371

Tokenizing and Parsing FUNCHONSoioiiiiii i

Why Regular Expressions?

Regexin PHP ...

An example of POSIX-style regexccccocevrein.n,

Regular expression [UNCHONS. ..ot
Perl-Compatible Regular EXPressions............cccociiiiiiiiiiiiiiiiiiiioic e
Example: A simple ink-Scraper............oocooiiiiiiii e

The regular eXPreSSIONccooiiiiiiii i

Using the expression in a fUnctionococoiiiiiiiii e, 383

Applying the funCtion ..o 384
Extending the code

Advanced String Functions

HTML functionsc.ccccoeveenee

Hashing using MD5ooiiiiiiii oo

Strings as character ColleCtionSocioiiiiiii i 387

String similarity fUnCHONS ..ot 389
SUIIIIIATY ¢ttt 390

Chapter 23: Working with the Filesystem........................ ... 391

Understanding PHP File PermiSSIONSccooiiiiiiiiiiiiiiioc et 391

File Reading and Writing FUNCHONS ooiiiiiiiiiie e 392
FALE OPOI1.. oo 393

HTTP OPEN ..o 394
FTP LOPOI .t 395

Xxi

Contents

FALE TEA ..o 396
Constructing file downloads by using fpassthru()................ccooooi 397
FLE WTIEE .o
FALE CLOSE ...

file_exiStS......evvvvveini
filesize....cccoovvviieeiii,
NetWOTK FUNCUOTIS ...
SYSIOZ FUNCHONS ...
DINS TUNCUOTIS ..o
SOCKE TUNCUOTIS ..o e
Date and Time Functions
If you don’t know either date Or time.............coooiiiiiiiii e 405
If you've already determined the date/time/timestamp..............coccocvereiiininnn. 406
Calendar Conversion FUNCUONScooiiiiie oo 407
SUIMIMATY ... 408

Chapter 24: Working with Cookies and Sessions 409

WHRAS @ SESSION? ... 409
So what's the problem?
Why should you care?...................
Home-grown AIETNAtIVES ..ot
TP address ..o
Hidden variables..............ooi
Cookie-based home-grown sessions
How Sessions Work in PHP ...
Making PHP aware of your session
Propagating session variablesccoiiiiiiiiii i
The simple approach (using $_SESSION)cccoooiiiiiiiiiiiiii e
Where is the data really stored?cocoiiin
Sample Session Code...........cocoocevirrnnn.
Session Functions..................cccoooo
CONMGUIALION ISSULS. ... ittt
COOKIES .
The setcookie() TUNCHONoiii e
EXAIMPIES ...
Deleting COOKIES ...t
Reading COOKIES ..ot
Cookie pitfallsoocooiiiiiiiii
Sending something else first............................
Reverse-order interpretationcccocoeorennnn
Cookie refusal
Sending HTTP HeAdTSooviiiiiiiiii e
Example: Redirection

Contents

Example: HTTP authentication.............cooooiiiiiiiiii e 429
Header GOLChAS ..o 430
Gotchas and TroubleshooUting.............ccooiiiiiiiiiii e, 430
SUIMIMATY ... 431
Chapter 25: Learning PHP Typeso, 433
TYPE ROUNA-UP e 433
RESOUTCES ... e 434
WHRAL QT€ TESOUTCES? ... 434

How to handle TeSOUTCEScooiiiiiii i 435

Type TeSUNG ..o 435
Assignment and COCTCIONoouiiiiiiiiiiiiiiii e 436
Type conversion behaviorocooiiiiiiii 436

EXPLICIt CONVETSIONIS ..ot 437

Conversion eXAMPLESociiiiiiiiiit e 438

Other useful type CONVETSIONSc.ooiiiiiiiiiiic e 440

INLEZET OVETTIOW ...t 441
Finding the 1argest iNtegerocooiiiiiiiii e 442
SUIIIIIIATY ¢ttt 442
Chapter 26: Learning PHP Advanced Functions 443
Variable Numbers of ATGUIMENITSooiiiiiiiiii i 443
Default argUITIEIITS ..o..iiiiiii e 444
Arrays as multiple-argument SUDSHIULES.coiiiiiiiiii e 445
Multiple arguments in PHP4 and above. ..ot 446
Call-DY-VALUE ... 447
Call-by-TefeTeICe ...t 448
Variable function NAMES ...t 450
An extended eXaMIPIE ..ot 450
SUIMIMATY ... 454
Chapter 27: Performing Math withPHP. 455
Mathematical COMSTATISoiiiiiiit e 455
Tests 0N NUIMIDETS ... 456
Base CONVETSIONoiiiiiiiiiiiii i 457
Exponents and Logarithms ... 461
TTIGOMOIMEITY ... 461
Arbitrary Precision (BC)ooiiiiiiiii oo 465
An arbitrary-precision eXampleocioiiiiiiii 466
Converting code to arbitTary-preciSIONooioioiiiiiiiii e 467
SUIIIIIIATY ..ttt 470
Chapter 28: Securing PHP it 471
POSSIBIE ALLACKS ... 472
Site defacement........coiiiiiii e 472
ACCESSING SOUTCE COUE ..ottt 474

XXiv

Contents

Reading arbitrary flles............cocoiiiiiiiiii 475
Running arbitrary Pprogramsccocoeiiiiiiiiiiiiiii e 477
Viruses and other e-CTItterscooiiiiiiiii i 479

FYI: Security Web SILES ..ottt 479
SUIMIMATY ... e 480
Chapter 29: Learning PHP Configuration........................... 483
Viewing Environment Variablesc.ocoiiiiiiiiii 483
Understanding PHP Configuration..............ccooooiiiiiiiiiiiiiiice e 484
Compile-time OPLONSc.ioiiiiiiii i 484
--with-apache[=DIR] or --with-apache2=[DIR] ... 485
--with-apxs[=DIR] or --with-apxs2[=DIR]...........ccccociviiiiiiiiii 485
--with-[database][=DIR] ... 486
--With-merypt[=DIR].....oiii e 487
—=With-Java=DIR] ..o 487
SeWIR-XMUTPC L 487
--with-dom[=DIR] ... 487
-—enable-bemath. ... 488
——enable-calendar. ..o 488
--with-config-file-path=DIRcccocoiiiii 488
-—enable-url-includes. ... 488
--disable-url-fopen-wrapper.............ccooiiiiiii 488

CGI compile-time OPLONScooiiiiiiiiiiiii i 488
—-with-exec-dir[=DIR] ... e 488
--enable-discard-path ... 488
--enable-force-cgi-redirectcooooiiiiiiiiiiii 489

Apache configuration fllesocoioiiiiiiiii 489
TIMEOUL ..o 489
DocumentROOT. ...t 490

AATYPE oo 490

ACTIOTL . 490
LoadMOdULe ... 491
AAMOAULE ... 491

The Php.ni fI1e ..o 491
short_open_tag = Off ... 491
disable_functions = [functionl, function2, function3 . . . functionn] 492
max_execution_time = 30 ... 492
error_reporting = E_ALL & ~E_NOTICE............occooiiiiii 492
error_prepend_string = [“"] ... 492
warn_plus_overloading = Off ... 492
variables_order = EGPCS ... 492

gpe_order = GPC ... 492
auto-prepend-file = [path/to/file]cooiiiiiiiiiii 492
auto-append-file = [path/to/file] ... 493
include_path = [DIR]ooiiiiiiiiii e 493

Contents

doc_10o0ot = [DIR] ..o 493
upload_tmp_dir = [DIR] ..o 493
session.save-handler = files...........oo 493
ignore_user_abort = [On/Off]............. 493
Improving PHP Performance..............ooiiiiiiiiiiii i 493
SUITIITIATY ..t 495

Chapter 30: Handing ExceptionswithPHP 497

Error Handling in PHP ...
Errors and exceptions
The Exception classccco.....
The try/catch BlocK ...
TRIOWING QN @XCEPLIOTL. ...ttt 501
Defining your own Exception subclasses..............coocooiiiiiiiiiiiiiiie, 502
Limitations of Exceptions in PHP ... 504
Other Methods of Error Handlingocoooiiiiiiii e 504
Native PHP €TTOTSoiiiiiiiiii i 504
Defining an error handler ... 506
TriGEETING @ USET EITOT ..o.uiiiiuiiiiiiiiiiit et 507
Logging and Debugging
SUIIIIIIATY ¢ttt

Chapter 31: Debugging PHP Programs.covvuinn.. 511

General Troubleshooting Strategies
Change one thing at a time...........
Try to isolate the Problemcooiiiiiiiiii
Simplify, then build up ...
Check the ODVIOUS ..ot
Document YOUT SOIULIOMiiiiiiiiiii i
AT fIXITIE, TELEST ...ttt

A Menagerie Of BUESoiiiiiiiii it
Compile-time bugsc.....

PHP Error Reporting and LOZEINg............ccooiiiiiiiiiiiiiiii e
ETXTor repOTTing ..o
Error loggingoocoooiiiiiiii
Choosing which errors to report or log
Error-Reporting FUNCHONS ..o 518

XXV

Contents

Diagnostic Print STAEIMETIESoouuiiiiiiit it 518
Using var_dump)oooiiiii e 519
USING SYSIOZ0) . 519
Logging to a custom loCatioNocooiiiiiiiiiiiiic i 521
USING eTTOT_L0Z() .o 522
SUIMIMIATY ..t 523

Chapter 32: Learning PHP Style i,

The Uses 0f STYLE ...t
Readability............cooooiiiii
Commentscccoeeeiiiiiiiiie

LONE VETSUS SHOT L.ttt
Underscores Versus CamMelCapso.ooviviiiiiiiiii i
Reassigning variables ...
Uniformity of Style.......oooiiii e
MaintainabIlitY ...
Avoid Magic UMDETS ...
Functions.............ccccoii
Include files ..o
Object WIappersccccoceevereennnn
Consider using version control
RODUSEIIESS ...
Unavailability of Serviceoociiiiiiiiiiiii e
Unexpected variable tyPes....... ..o
Efficiency and COMCISETIESSo.iiiiiiiiiii it
Efficiency: only the algorithm mattersc.cocoviiiiiiiiiii e
Efficiency optimization tPSoocioiiiiiiiiii e
Don't reinvent the wheel ...
Discover the bottleneck
Focus on database queries
Focus on the innermost loop ..o
Conciseness: the dOWNSIAeccooiiiiiiiiii i
Conciseness rarely implies efficiency ...
Conciseness trades off with readability....................o
CONCISEIIESS TIPS ..ttt
Use return values and side effects at the same time
Use incrementing and assignment operators

Reuse functions............cocooiiiiiiii

There’s nothing wrong with Boolean

Use short-circuiting Boolean expressions
HTML Mode or PHP MOd@?........oooiiiiii i 539
Minimal PHP ... 540
Maximal PHP.......oo e 541

XXVi

Contents

Meditum PHP ..o 542

The heredoe Styleo 543
Separating Code fTrom Design...........cociviiiiiiiiiii i, 544
FUNCHONS. ... e 544
Cascading style sheets in PHP ... 545
Templates and page CONSISLENCYoiiiiiiiiiii e 545
SUIMMIATY .. 547
Part IV: Other Databases 549
Chapter 33: Connecting PHP and PostgreSQL 551
Why Choose PoStZreSQLY ..ottt 551
Why Object-Relational ANYWaY?ccoooiiiiiiiiii i 552
But is it a database Yet?ocooiiiiiiiiiiiiii e 553
Down to Real WOTK ... 554
PHP and PostZreSQL ...ttt 556
The Cartoons Database.coooiiiiiiiiiiii e 557
SUITIITIATY .. 565
Chapter 34: Using PEAR DB withPHP.................. 567
Pear DB CONCEPLS ... 568
Data Source Names (DSNS)......oooi i 568
CONTMCCTIONY .. 570
QUBTY e 570

ROW TetTieval.......oooiii e 571
DISCONMMECTION. ... 571

A complete eXAMPLE ..ottt 571
PEAR DB FUNCHOMIS ... 573
Members of the DB ClaSS.......o.ooiiiiiiiiiii e 573
Members of the DB_Common Class............ccccooiiiiiiiiiiii e 573
Members of the DB_Result class.............ccocoiiiiiiiiii e 574
SUIIIILATY ..ttt 574
Chapter 35: An OverviewofOracle.o, 575
When Do You Need Oracle? ..o 575
IMIOTICY . 576
Other TivalroUs TESOUTCESoviiiiiiiiiiiiic e 576

HUEE dALA SELS....viiii i 576

Lots of big formulaic writes or data munging..............ccoccocoooiiiiiiiii 577
Triggers. ..o 577

Legal Habilityocooiiiiiii i 577
Bottom line: two-year oUtlOOKocioiiiiiiiiiiiii i 578
Oracle and Web ATchiteCture ..o, 578
Specialized team members ... 578
Shared development databasesocoiiiiiiiiiiiii e 578

Contents

Limited schema changes...............ocoiiiiii i 579

Tools (01 lack thereol)o o 579
Replication and failover ... 579

Data CaChing......ooioiiiiiii e 579
Using OCI8 FUNCLONS. ... 580
ESCAPINE SIIINESttt 580
Parsing and eXeCUtING...........cooiiiiii i 581

EITOT T@POTTITIE ... 581
MemoOoTy MANAZEINICTIL ...ttt 581

ASK 0T IULLS .o 581
Fetching entire data SEUSc.ooiiiiiiiiii e 581

AL CAPS 1. 582
TransaCtioNALILYooiioiii oo 582
Stored procedures and CUTSOTS ..ottt 583
Project: POINE EAITOToviiiiiiii i 584
Project: Batch EdItOTooiiiiiii i 594
SUIMIMATY ... 604
Chapter 36: An Introductionto SQLite, 605
An Introduction t0 SQLITEc..iiiiiii oo 605
Using SQLite-related FUNCHOMNS.ooiiiiiiiiiiiiiiiiei e 606
Creating Databasesc.ocoiiiiiiii i 606
Running QUETIESc..oiiiiiiiiiii e 606
Creating Tables ... 606

INSerting Data........cooiiiiiii 608

FetChing Data.....oooioiiieii e 608

More 0N SQLILE ..o 610
SUITIITIATY ..ottt 610
Part V: Connections 611
Chapter 37: Sending E-Mail withPHP 613
Sending E-Mail with PHP ... 613
WiIndows CONIGUTALIONoiiiiiiiiiii i 613
Linux COnfIgUIAtIoN ..o 614

The mail fUNCHON ..o 614
Sending Mail from a FOTT.........cooiiiiiiii e 616
SUIMIMIATY ..ot 618
Chapter 38: Integrating PHPand Java 619
PHP fOr Java PrOgIaImIneTsc.ooviiiiieiiiet ettt 619
SIMILATIEES. ..o 620
SYTIAX e 620

OPCTALOTS ..ttt 620

Object MOEL. ..ot 620

XXViii

Contents

Memory ManageIMeTIIlottt 620
Packages and libraries............cooiiiiiiiiiiii 620
DAOTOIICES ...t 620
Compiled Versus SCriptingcoooiiiiiiiiiiiiiiiiiii e, 621
Variable declaration and loose typingcoccooiiiiiiiiiiiii 621
Java Server Pages and PHP ... 621
Embedded HTML ..o 621
Choose your scripting language............ccooiviiiiiiiiiiiie e 622
Integrating PHP and JAVA.........oociiiiiiiiii e 622
The Java SAPT ..o 623
Installation and SETUPo.ooioiiiii i 623
Further informationocooiiiiiiii e 623
The Java eXTENSIONoiii i 623
Installation and SETUPoooiviiiii e 624
TOSTINIZ .. 625
The JAVA ODJECT....viiiiiiiiiic e 625
ETT0rs and eXCEPHIONS ..ot 627
Potential GOtChas...........ooiiiiiiiiii i 628
Installation ProbIemsocooiiiiiiiiii 628
It's the classpath, stupid.............ccoooiiiiiiiii 628
Here comes that loose typing again...............ccoocooioiiiiiiii 628
SPEOM e 628
The sky’s the Hmit........oooiiii e 629
SUIMIMIATY -ttt 629
Chapter 39: Integrating PHP and JavaScript................ 631
Outputting JavaScript With PHP ... 631
DUETING ODJECLS ...t 632
PHP doesn’t care What it OULPULSo.oovioioiiii e 632
WHhere 10 USe JAVASCIIP ...ttt 633
PHP as a Backup for JaVaASCIIPL. ..ot 634
Static versus Dynamic JavaSCTIPLooiiiiiiiiiiiiiiiei e 636
Dynamically generated formscocooiiiiiiiiiiii 637
Passing data back to PHP from JavaScriptcccocoiiiiiiiiiiiii, 642
SUIMIMATY ... 646
Chapter 40: Integrating PHPand XMLot 647
WHRAE IS XML ..o 647
Working with XIML ...
Documents and DTDSccoiiiiiiii e
The structure of @ DTDociiiiiiiiieii e
Validating and nonvalidating parsers
SAX versus DOM ...
DOM .
Using DOM XML
DOM [UNCHOTIS 1.

XXX

Contents

A X e 659
USING SAX L e 660

SAX OPUOTIS ... 601

SAX FUNCHOMS ... 663
SIMPIEXML APL ..o 664
Using SIMPIeXML......oiiiiiiii e 664
SIMPIEXML fUNCHOTIS ... 665

A Sample XML APPLCAION. ..ottt 665
Gotchas and TroubleshOOtng.ccooiiiiii 672
SUITIITIATY .ottt 673
Chapter 41: Creating and Consuming Web Services with PHP........... 675
The End of Programming as We Know Itcocoiiiiiiiiiiiiiii e 675
The ugly truth about data movement.............coccoociiiiiiiii e 675
Brutal SIMPIICILY .o 676
REST, XML-RPC, SOAP, INEToiiiiiiiiii i 678
RE ST e 678
SOAP . 680
Current Issues with Web Servicescocooiiiiiiiiiiiiiiiiiiii e 681
Large FOOUPTIIIE. ...iiiiiiiiii e 681
Potentially heavy load.............ocoooiiiii 681
SEANAATAS. ... 682

Hide and SEekooiiiii 682

Who pays and ROW? ... 682
Project: A REST CHENU.......oiiiiiiii e 683
SUIMIMIATY ...t 688
Chapter 42: Creating GraphicswithPHP........................... 689
YOUT OPTIOTIS ..ot 689
HTML GTAPRICS .t 690
Creating images USING G . ..oooviiiiii e 695
WHAL 1S ZA7 1o 695
Image formats and BrOWSETSccoociiiiiiiii i 696
INStallation. ..o 696

G COTICEPLS 1. 697
COLOTS e 698

Drawing coordinates and commands..............ccocoviiiiniiiiiiiie 699

Format translationccooiiiiiiiii i 699

FIe@INgG TESOUTTES ...ttt 699

FUNCUOTIS. ..o 700
Images and HTTPoooooiiiiii e 701
Full-page IMagesocoiiiiiiiiiiii e 701

Embedded images from files..................ooooiii 702

Embedded images from SCripts..........cocooiiiiiiiiiiiiii e, 702

Example: fractal images............ccocooiiiiiiiiii 703

Contents

Gotchas and TroubleshOOtNE. ..ot 710
Symptom: completely blank imageccccooooiiiii 710
Symptom: headers already SENt.............ccooiiiiiiiiiiiiiiii 710
Symptom: broKen fmMagecooiiiiiiiiiiiii e 711

SUIMIMATY ... 712

Part VI: Case Studies 713
Chapter 43: Developing a Weblog withPHP 715

WHY WEDLOZS? ... 715

The SIMPlest WEDBLOg ...t 716

Adding an HTML-Editing TOOL..........occoiiiiiiiii e 722

Changes and AddItIONS ..ot 724

SUIMMMIATY ... 725

Chapter44: ATriviaGame.oiiiiin ittt it enenns 727

Concepts Used in This CRapter.........ccooiiiiiiii i 727

THE GAIME ... 728
OUT VETSIONL. ...t 728
SAMPIE SCTEOILS ...ttt 728
The TULES...oeo e 729
Playing the game yourself ... 731

The COde ..o 731
COE fIES ..t 732

IR PP 732
game_display_class.php ... 735
game_texXt_Class.PhP....c.oooiiiiii i 744
game_ClasS.PIP.....iiii i 746
game_parameters_Class.PIpcooooiiiiiiiiiii e 753
certainty_UtilS.PRp ..o 755
QUESHION_ClASSPIP Lo 759
ADVATSPIP - 763
Creating the databaseccooiiiiiiiii e 764
Table definitionsccoiiiiiii e 764
entry _fOrm.PRP ... 766

General Design Considerationscooiiiiiiiiiiii e, 768
Separation of code and displaycociiiiiiiiiii 768
Persistence of data ..o 768
Exception handling.............ocoooiiiiii 769

SUIMIMATY ... 769

Chapter 45: Data Visualization with Venn Diagrams 771

Scaled Venn dia@rammsoouiiiiiiiii i 771
The task ... 772

Outline of the COde........oiiiiiii i 772

Contents

Necessary TrigOMOMELIYc.oiiiiiii i 773
Planning the DISPlayccooiiiiiiiii e 777
SImplifying assumptionsccocooiiiiiiiiiiii i 777
Determining size and scaleooociiiiiiiiiiii 777

The @aSY CASES ...ttt 778

The hard Case.........coooiiii 778

DASPLAY - 784
INOLeS 0N CITCIES. ... 784

NOLES 0N CENLETING LEXT ... uuiiiiiiii ettt 785

Visualizing @ Database............ccioiiiiiiii e 785
TIYITIZ IE OUL. et 790
EXLOTISIOTIS L. 792
SUIIIIIIATY ..ot 793
Appendix A: PHP for C Programmers.coiiiiiiiinn... 795
SIMIIATIEES .. 795
SYTIEAK e 795
OPCTALOTS ... 796
CONLIOL SLIUCTUTES. ... 796
Many fUNCHON NAIMES ...t 796

DI ETOTICES. ..ot 796
Those dollar SIgNS..........ccooiiiiiiiiii e 796

Ty DS 796

Type CONVETSION.... ... 797
AATTAYS 1. 797

INO SLTUCLUTE LY ..o 797

O DS 1+ttt 797

INO POIIERTS .t 797

INO PTOLOLYPES 1.ttt 797
MemMOTY MANAZEIIICTIL ...ttt 798
Compilation and HNKING. ... 798
PeIMISSIVEIIESS ... 798
Guide t0 the BOOK. ..ot 798
A Bonus: Just Look at the Code! ... 799
Appendix B: PHP for Perl Hackersot 801
SIMILATIEIES ...t 801
Compiled scripting languages.............c.ccooiiiiiiiiiiiii e 801
SYTUAX .o 802
Dollar-sign variables ..o 802

No declaration of variablesocooiiiiiiiiiii e 802
Loose typing of variables ..o 802
Strings and variable interpolation....................coi 802
DITETOIICES. ...t 803
PHP is HTML-embedded..............ocoiiii e 803

NO @ O % VATIADIES ... 803

XXXxii

Contents

Arrays versus hashes...........oooiiiiii e, 803
Specifying arguments to fUnctionscccocoiiiiiiiiiiiiiii 803
Variable scoping in fUNCHONS.ccooiiiiiiiiiii e, 804
No module system as SUCh.............cooioiiiiiiiiiii 804
Break and continue rather than next and last.................... 805
NO elSif o,

More kinds of comments
Regular expressions......................

MiSCEILANEOUS TPS ...ttt
What about use 0f SUTICt “VATS™?ooiiiiiii e, 806
WHETE'S CPANT ...ttt 806

GUide 10 the BOOK.o.iiiiiiiiiiiii e

Appendix C: PHP for HTMLCodersooiiiiiininnnnn.

The GOOA INEWS ...t
You already kKnow HTMLoooiiiiiiii i
PHP is an easy first programming language to learn ...,
Web development is increasingly prefab anyway................cccocoiiiiiii
The Bad INEWS......uiiiii i
If programming were that easy, you’d already know how
Backend servers can add complexityccocooooiiiiiiiiii
Concentrate ONoooiiiiiiiiiiiie e
Reading other people’s code....... ..o
Working on what interests YOUocoooiiiiiiiiiiiiii e
Thinking about programming ...
Learning SQL and other protocols.............o.ooiiiiiiii
Making cosmetic changes to prefab PHP applicationscccccoooiiiiiiiin..
Debugging is Programmiing.........ccoooiiiiiiiiiiiioi et
AVOIA AU FATSL . . & oo 814
Maximal PHP SUYLE ..ot
Programming large applications from scratch............
Consider ThiSot
Reading a book on C programming..........................
Minimal PHP SEYLe ..ot
Use the right tools for the job ...

XXxiii

Contents

Give detailed desCTIPHONS.c..ovioiiiiiiie e
PHP is international ...
There are HIMISoooiiii i
Do it yourself ...
1t's probably YOU ..o
There are now commercial alternatives
Other PHP Web Sites...........c.ocoocooie.
Core scripting engine and tools
PHP Knowledgebase.cooiiiiiiiiiii i
Articles and tULOTIALS ..o
PHP COAEDASES ...
MaJOr PHP PIOJECES ..ottt
Appendix E: PEAR .. oo i
WHhat IS PEAR? ..ot 830
The PEAR PaCKage SySTEIN........ooiiiiiiiiiiiii oot
A sampling of PEAR packages............ooooiiiiiiiiiii i
How the PEAR database WOTKS.............ccoiiiiiiiiiiii e
The Package Managerociiiiiiiiiiiii oo
Installing the PEAR Package Manager on Linux
Updating the Package Manager...............occcoooiiiniiiiiiii,
Using the Manager............ccococooiiioiiiiiieee
Automatic package installation ...
Automatic package removal ...
Semiautomatic package installation...................
Using PEAR packages in your SCripts............cccocoiiiiiiiiiiiiiii e
PHP Foundation Classes (PFC)ccooiiiiiiii e
PHP Extension Code Library (PECL)........cocooiiiiiiiiiiiiei e
The PEAR COding SUYI ..ottt
Indenting, whitespace, and line length ...
Formatting control structures
if Statementsccceeeeeee.
if/else Statements
if/elseif StAtETENIS ...
SWILCh SEALETNEIIES ...
Formatting functions and function calls................cocoiiiii
SUIMIMATY ...
Index ..o e e e 841

XXXIV

What Is PHP?

PHP is an open source, server-side, HTML-embedded web-scripting language that is compatible

with all the major web servers (most notably Apache). PHP enables you to embed code fragments
in normal HTML pages — code that is interpreted as your pages are served up to users. PHP also
serves as a “glue” language, making it easy to connect your web pages to server-side databases.

Why PHP?

We devote nearly all of Chapter 1 to this question. The short answer is that it’s free, it's open
source, it’s full featured, it’s cross-platform, it’s stable, it’s fast, it’s clearly designed, it’s easy to
learn, and it plays well with others.

What’s New in This Edition?

This book is a new edition of the popular PHP Bible and PHP5 and MySQL Bible series. The book
updates the elements from previous versions, where applicable, for PHP 6 and MySQL 6.

New PHP 6 features

Although much of PHP 5’s functionality survives unchanged in PHP 6, there have been some
changes. Among the ones we cover are:

B Unicode support, making internationalization easier

B Security enhancements such as removing safe_mode and register globals

B Enhancements to the object-oriented interfaces

Who wrote the book?

The first two editions were by Converse and Park, with a guest chapter by Dustin Mitchell and
tech editing by Richard Lynch. For the third edition, Clark Morgan took on much of the revision
work, with help from Converse and Park as well as from David Wall and Chris Cornell, who also
contributed chapters and did technical editing. For this edition, Steve Suehring did revision work
with Aaron Saray providing technical editing.

XXXV

Introduction

XXXVi

Whom This Book Is For

This book is for anyone who wants to build web sites that exhibit more complex behavior than is
possible with static HTML pages. Within that population, we had the following three particular
audiences in mind:

Web site designers who know HTML and want to move into creating dynamic web sites

Experienced programmers (in C, Java, Perl, and so on) without web experience who want
to quickly get up to speed in server-side web programming

m Web programmers who have used other server-side technologies (Active Server Pages, Java
Server Pages, or ColdFusion, for example) and want to upgrade or simply add another tool
to their kit

We assume that the reader is familiar with HTML and has a basic knowledge of the workings of the
web, but we do not assume much programming experience beyond that. To help save time for more
experienced programmers, we include a number of notes and asides that compare PHP with other
languages and indicate which chapters and sections may be safely skipped. Finally, see our appen-
dixes, which offer specific advice for C programmers, ASP coders, and pure-HTML designers.

This Book Is Not the Manual

The PHP Documentation Group has assembled a great online manual, located at www.php.net and
served up (of course) by PHP. This book is not that manual or even a substitute for it. We see the
book as complementary to the manual and expect that you will want to go back and forth between

them to some extent.

In general, you'll find the online manual to be very comprehensive, covering all aspects and func-

tions of the language, but inevitably without a great amount of depth in any one topic. By contrast,
we have the leisure of zeroing in on aspects that are most used or least understood and give back-

ground, explanations, and lengthy examples.

How the Book Is Organized

This book is divided into five parts, as the following sections describe.

PartI: PHP: The Basics

This part is intended to bring the reader up to speed on the most essential aspects of PHP, with com-
plexities and abstruse features deferred to later parts.

m Chapters 1 through 3 provide an introduction to PHP and tell you what you need to know
to get started.

Introduction

m Chapters 4 through 9 are a guide to the most central facets of PHP (with the exception of
database interaction): the syntax, the data types, and the most basic built-in functions.

m Chapter 10 is a guide to the most common pitfalls of PHP programming.

Part I1: PHP and MySQL
Part 11 is devoted both to MySQL and to PHP’s interaction with MySQL.
m Chapters 11 and 12 provide a general orientation to web programming with SQL data-
bases, including installation of MySQL.

m Chapter 13 covers Structured Query Language (SQL), and Chapter 14 covers database
administration basics.

m Chapter 15 is devoted to PHP functions for MySQL.
Chapters 16 and 17 are detailed, code-rich case studies of PHP/MySQL interactions.
Chapters 18 and 19 provide tips and gotchas specific to PHP/MySQL work.

Part Il1: Advanced Techniques

In this part we cover more advanced features of PHP, usually as self-contained chapters, including
object-oriented programming, session handling, exception handling, using cookies, and regular expres-
sions. Chapter 31 is a tour of debugging techniques, and Chapter 32 discusses programming style.

Part IV: Connections
In this part we cover advanced techniques and features that involve PHP talking to other services,
technologies, or large bodies of code.
m Chapters 33 through 36 cover PHP’s interaction with other database technologies
(PostgreSQL, Oracle, PDO, and SQLite).

m Chapters 37 through 42 cover self-contained topics: PHP and e-mail programs, combining
PHP with JavaScript, integrating PHP and Java, PHP and XML, PHP-based Web services,
and creating graphics with the gd image library.

Part V: Case Studies

Here we present three extended case studies that wrap together techniques from various early chapters.

m Chapter 43 takes you through the design and implementation of a weblog.
B Chapter 44 discusses a soup-to-nuts implementation of a novel trivia quiz game.

m Chapter 45 uses the gd image library to visualize data from a MySQL database.

XXXVii

Introduction

Appendices

At the end, we offer three “quick-start” appendixes, for use by people new to PHP but very famil-
iar with either C (Appendix A), Perl (Appendix B), or pure HTML (Appendix C). If you are in any
of these three situations, start with the appropriate appendix for an orientation to important dif-
ferences and a guide to the book. Appendix (D) is a guide to important resources, web sites, and
mailing lists for the PHP community. The final appendix (E) is information on the PEAR repository,
which is no longer scheduled to be included in PHP 6. However, this information (from a previous
edition of the book) may be helpful to someone maintaining a PHP site on an earlier version of PHP
or one that uses PEAR.

Conventions Used in This Book

We use a monospaced font to indicate literal PHP code. Pieces of code embedded in lines of text look
like this, while full code listing lines look as follows:

print("this");

If the appearance of a PHP-created web page is crucial, we include a screenshot. If it is not, we
show textual output of PHP in monospaced font. If we want to distinguish the PHP output as seen
in your browser from the actual output of PHP (which your browser renders), we call the former
browser output.

If included in a code context, italics indicate portions that should be filled in appropriately, as
opposed to being taken literally. In normal text, an italicized term means a possibly unfamiliar
word or phrase.

What the Icons Mean

Icons similar to the following example are sprinkled liberally throughout the book. Their purpose is
to visually set off certain important kinds of information.

Tip icons indicate PHP tricks or techniques that may not be obvious and that enable you
to accomplish something more easily or efficiently.

Note icons usually provide additional information or clarification but can be safely
- ignored if you are not already interested. Notes in this book are often audience-specific,
targeted to people who already know a particular programming language or technology.

Caution icons indicate something that does not work as advertised, something that is eas-
ily misunderstood or misused, or anything else that can get programmers into trouble.

We use this icon whenever related information is in a different chapter or section.

XXXV

PR
|

—_— S

A5
v
G

Introducing PHP

IN THIS PART

Why PHP and MySQL?

Server-Side Scripting Overview

Getting Started with PHP

Learning PHP Syntax and
Variables

Learning PHP Control Structures
and Functions

Passing Information with PHP

Learning PHP String Handling

Learning Arrays

Learning PHP Number Handling

PHP Gotchas

his first chapter is an introduction to PHP, MySQL, and the interac-

tion of the two. In it, we’ll try to address some of the most common

questions about these tools, such as “What are they?” and “How do
they compare to similar technologies?” Most of the chapter is taken up with
an enumeration of the many, many reasons to choose PHP, MySQL, or the
two in tandem. If you're a techie looking for some ammunition to lob at your
PHB (“Pointy-Haired Boss,” for those who don’t know the Dilbert cartoons)
or a manager asking yourself what is this P-whatever thing your geeks keep
whining to get, this chapter will provide some preliminary answers.

What Is PHP?

PHP is the web development language written by and for web developers.
PHP stands for PHP: Hypertext Preprocessor. The product was originally
named Personal Home Page Tools, and many people still think that’s what the
acronym stands for, but as it expanded in scope, a new and more appropri-
ate (albeit GNU-ishly recursive) name was selected by community vote.
PHP is currently in its sixth major rewrite, called PHP6 or just plain PHP.

PHP is a server-side scripting language, usually used to create web applica-
tions in combination with a web server, such as Apache. PHP can also be
used to create command-line scripts akin to Perl or shell scripts, but such
use is much less common than PHP’s use as a web language.

Strictly speaking, PHP has nothing to do with layout, events, on-the-fly
Document Object Model (DOM) manipulation, or really anything about the
look and feel of a web page. In fact, most of what PHP does is invisible to
the end user. Someone looking at a PHP page will not necessarily be able to
tell that it was not written purely in Hypertext Markup Language (HTML),
because the result of PHP is usually HTML.

IN THIS CHAPTER

Understanding PHP and MySQL

The benefits of using PHP
and MySQL

m Introducing PHP

What Is MySQL?

MySQL (pronounced My Ess Q ED is an open source, SQL relational database management system
(RDBMS) that is free for many uses (more detail on that later). Early in its history, MySQL occasion-
ally faced opposition because of its lack of support for some core SQL constructs such as subselects
and foreign keys. Ultimately, however, MySQL found a broad, enthusiastic user base for its liberal
licensing terms, perky performance, and ease of use. Its acceptance was aided in part by the wide
variety of other technologies such as PHP, Perl, Python, and the like that have encouraged its use
through stable, well-documented modules and extensions.

Databases are generally useful, perhaps the most consistently useful family of software products
(the “killer product”) in modern computing. Like many competing products, both free and com-
mercial, MySQL isn't a database until you give it some structure and form. You might think of this
as the difference between a database and an RDBMS (that is, RDBMS plus user requirements equal a
database).

There’s lots more to say about MySQL, but then again, there’s lots more space in which to say it.

Deciding on a Web Application Platform

There are many platforms upon which web applications can be built. This section compares PHP to
a few other platforms and highlights some of PHP’s and MySQLSs strengths.

Cost

PHP is one of the “P’s” in the popular LAMP stack. The LAMP stack refers to the popular combina-
tion of Linux, Apache, MySQL, and PHP/Perl/Python that runs many web sites and powers many
web applications. Many of the components of the LAMP stack are free, and PHP is no exception.
PHP is free, as in there is no cost to develop in and run programs made with PHP. Though MySQLs
license and costs have changed, you can obtain the Community Server edition for free. MySQL
offers several levels of support contracts for their database server. More information can be obtained
at www.mysql.com. Both PHP and MySQL run on a variety of platforms, including many variants
of Linux, Microsoft Windows, and others. Running on an operating system such as Linux gives the
opportunity for a completely {ree web application platform, with no up-front costs.

Of course, when talking about software development and application platforms, the up-front cost of
software licensing is only a portion of the total cost of ownership (TCO). Years of real-world experi-
ence with Linux, Apache, MySQL, and PHP in production environments has proved that the total
cost of maintaining these platforms is lower, many times much lower, than maintaining an infra-
structure with proprietary, non-free software.

Why PHP and MySQL?

Ease of Use

When compared to many other programming languages, PHP makes it easy to develop powerful
web applications quickly (this is a blessing and a curse). Many of the most useful specific functions
(such as those for opening a connection to an Oracle database or fetching e-mail from an Internet
Message Access Protocol [IMAP] server) are predefined for you. A lot of complete scripts are waiting
out there for you to look at as you're learning PHP.

Most advanced PHP users (including most of the development team members) are diehard hand-
coders. They tend to share certain gut-level, subcultural assumptions — for instance, that hand-
written code is beautiful and clean and maximally browser-compatible and therefore the only way
to go — that they do not hesitate to express in vigorous terms. The PHP community offers help and
trades tips mostly by e-mail, and if you want to participate, you have to be able to parse plain-text
source code with facility. Some WYSIWYG users occasionally ask list members to diagnose their
problems by looking at their web pages instead of their source code, but this rarely ends well.

That said, let us reiterate that PHP really is easy to learn and write, especially for those with a little
bit of experience in a C-syntaxed programming language. It’s just a little more involved than HTML.
This small learning curve means that relatively inexperienced programmers can sometimes make
mistakes that turn into large security issues. This is the curse of PHP. While this book has no spe-
cific chapter dedicated to security, I feel that security needs to be applied at every layer, during every
phase of programming. Therefore dedicating a single chapter would not do justice to the importance
of web application security.

If you have no relational database experience, or are coming from an environment such as Microsoft
Access, MySQLs command-line interface and lack of implicit structure may at first seem a little
daunting. MySQL has a few GUI (graphical user interface) tools to help work with databases. None
of the GUI tools is a substitute for learning a little theory and employing good design practices, but
that is a subject for another chapter.

HTML-embeddedness

PHP can be embedded within HTML. In other words, PHP pages are ordinary HTML pages that
escape into PHP mode only when necessary. Here is an example:

<HEAD>

<TITLE>Example.com greeting</TITLE>

</HEAD>

<BODY>

<P>Hello,

<{?php

// We have now escaped into PHP mode.

// Instead of static variables, the next three lines
// could easily be database calls or even cookies;
// or they could have been passed from a form.
$firstname = 'Joyce';

$lastname = 'Park';

m Introducing PHP

$title = "Ms.';

echo "$title $lastname";

// 0K, we are going back to HTML now.

?>

. We know who you are! Your first name is <?php echo
$firstname; 7>.</P>

<P>You are visiting our site at <?php echo date('Y-m-d H:i:s");
L/ P>

{P>Here is a link to your account management page: <A
HREF="http://www.example.com/accounts/<?php echo
"$firstname$lastname"; ?>/"><?php echo $firstname; ?>'s account
management page</P>

</BODY>

</HTML>

When a client requests this page, the web server preprocesses it. This means it goes through the
page from top to bottom, looking for sections of PHP, which it will try to resolve. For one thing, the
parser will suck up all assigned variables (marked by dollar signs) and try to plug them into later
PHP commands (in this case, the echo function). If everything goes smoothly, the preprocessor will
eventually return a normal HTML page to the client’s browser, as shown in Figure 1-1.

FIGURE 1-1

A result of preprocessed PHP

Example.com greeting - Mozilla {Build I1D: 2002051006}

. Eile Edit View Go B ks Tools Wind Help Debug 0A

‘ Q Q @ @ |i% http://localhost/sent code/chl/greeting.php @I €\, Search I gﬂm

Hello, Ms. Park . We know who you are! Your first name is Joyce.

You are visiting our site at 2002-07-29 00:52:42

Here is a link to your account management page: Joyce's account
' management page

Document: Done (0.82 secs) ==

If you peek at the source code from the client browser (select Source or Page Source from the View
menu, it will look like this:

<HEAD>
KTITLE>Example.com greeting</TITLE>

Why PHP and MySQL?

</HEAD>
<BODY>
{P>Hello,
Ms. Park
We know who you are! Your first name is Joyce.</P>

<P>You are visiting our site at 2002-04-21 19:34:24</P>

<P>Here is a link to your account management page: <A HREF="http://
www.example.com/accounts/JoycePark/">Joyce's account management page</
ADL/P>

</BODY>

</HTML>

This code is exactly the same as if you were to write the HTML by hand. So simple!
The HTML-embeddedness of PHP has many helpful consequences:

PHP can quickly be added to code produced by WYSIWYG editors.
PHP lends itself to a division of labor between designers and programmers.

Every line of HTML does not need to be rewritten in a programming language.

PHP can reduce labor costs and increase efficiency because of its shallow learning curve
and ease of use.

Cross-platform compatibility

PHP and MySQL run native on every popular flavor of Linux/Unix (including Mac OS X) and
Microsoft Windows. A huge percentage of the world’s Hypertext Transfer Protocol (HTTP) servers
run on one of these two classes of operating systems.

PHP is compatible with the leading web servers: Apache HTTP Server for Linux/Unix and Windows
and Microsoft Internet Information Server. It also works with several lesser-known servers. Specific
web server compatibility with MySQL is not required, since PHP will handle all the dirty work for you.

Stability

The word stable means two different things in this context:

B The server doesn’t need to be rebooted or restarted often.

B The software doesn’t change radically and incompatibly from release to release.

To our advantage, both of these connotations apply to both MySQL and PHP.

Apache Server is generally considered the most stable of major web servers, with a reputation for
enviable uptime percentages. Most often, a server reboot isn’t required for each setting change. PHP
inherits this reliability; plus, its own implementation is solid yet lightweight.

m Introducing PHP

PHP and MySQL are also both stable in the sense of feature stability. Their respective development
teams have thus far enjoyed a clear vision of their project and refused to be distracted by every new
fad and ill-thought-out user demand that comes along. Much of the effort goes into incremental per-
formance improvements, communicating with more major databases, or adding better OOP support.
In the case of MySQL, the addition of reasonable and expected new features has hit a rapid clip. For
both PHP and MySQL, such improvements have rarely come at the expense of compatibility.

Many extensions

PHP makes it easy to communicate with other programs and protocols. The PHP development team
seems committed to providing maximum flexibility to the largest number of users.

Database connectivity is especially strong, with native-driver support for about 15 of the most popu-
lar databases plus Open DataBase Connectivity (ODBC). In addition, PHP supports a large number
of major protocols such as POP3, IMAP, and LDAP. Earlier versions of PHP added support for Java
and distributed object architectures (Component Object Model [COM] and Common Object Request
Broker Architecture [CORBAJ), making n-tier development a possibility for the first time, fully incor-
porated GD graphics library and revamped Extensible Markup Language (XML) support with DOM
and simpleXML.

Fast feature development

Users of proprietary web development technologies can sometimes be frustrated by the glacial speed
at which new features are added to the official product standard to support emerging technologies.
With PHP, this is not a problem. All it takes is one developer, a C compiler, and a dream to add
important new functionality. This is not to say that the PHP team will accept every random contri-
bution into the official distribution without community buy-in, but independent developers can and
do distribute their own extensions that may later be folded into the main PHP package in more or
less unitary form. For instance, Dan Libby’s elegant xmlrpc-epi extension was adopted as part of the
PHP distribution in version 4.1, a few months after it was first released as an independent package.

PHP development is also constant and ongoing. Although there are clearly major inflection points,
such as the transition between PHP4 and PHP5, these tend to be most important deep in the guts
of the parser — people were actually working on major extensions throughout the transition period
without critical problems. Furthermore, the PHP group subscribes to the open source philosophy
of “release early, release often,” which gives developers many opportunities to follow along with
changes and report bugs.

Not proprietary

The history of the personal computer industry to date has largely been a chronicle of proprietary
standards: attempts to establish them, clashes between them, their benefits and drawbacks for the
consumer, and how they are eventually replaced with new standards.

Why PHP and MySQL?

In the past few years the Internet has demonstrated the great convenience of voluntary, standards-
based, platform-independent compatibility. E-mail, for example, works so well because it enjoys a
clear, firm standard to which every program on every platform must conform. New developments
that break with the standard (for example, HTML-based e-mail stationery) are generally regarded as
deviations, and their users find themselves having to bear the burdens of early adoption.

Furthermore, customers (especially the big-fish businesses with large systems) are fed up with
spending vast sums to conform to a proprietary standard only to have the market uptake not turn
out as promised. Much of the current momentum toward XML and web services is driven by years
of customer disappointment with Java RMI (Remote Method Invocation), CORBA, COM, and even
older proprietary methods and data formats.

Right now, software developers are in a period of experimentation and flux concerning proprietary
versus open standards. Companies want to be sure that they can maintain profitability while adopt-
ing open standards. There have been some major legal conflicts related to proprietary standards,
which are still being resolved. These could eventually result in mandated changes to the codebase
itself or even affect the futures of the companies involved. In the face of all this uncertainty, a grow-
ing number of businesses are attracted to solutions that they know will not have these problems in
the foreseeable future.

PHP is in a position of maximum flexibility because it is, so to speak, antiproprietary. It is not tied
to any one server operating system, unlike Active Server Pages. It is not tied to any proprietary
cross-platform standard or middleware, as is Java Server Pages or ColdFusion. It is not tied to any
one browser or implementation of a programming language or database. PHP isn't even doctrinaire
about working only with other open source software. This independent but cooperative pragmatism
should help PHP ride out the stormy seas that seem to lie ahead.

Strong user communities

PHP is developed and supported in a collaborative fashion by a worldwide community of users.
Some animals (such as the core developers) are more equal than others, but that’s hard to argue
with, because they put in the most work, had the best ideas, and have managed to maintain civil
relationships with the greatest number of other users.

The main advantage for most new users is technical support without charge, without boundaries,
and without the runaround. People on the mailing list are available 24/7/52 to answer your ques-
tions, help debug your code, and listen to your gripes. The support is human and real. PHP commu-
nity members might tell you to read the manual, take your question over to the appropriate database
mailing list, or just stop your whining — but they’ll never tell you to wipe your C drive and then
charge you for the privilege. Often, they’ll look at your code and tell you what you're doing wrong or
even help you design an application from the ground up.

As you become more comfortable with PHP, you may wish to contribute. Bug tracking, offering
advice to others on the mailing lists, posting scripts to public repositories, editing documentation,
and, of course, writing C code are all ways you can give back to the community.

m Introducing PHP

10

MySQL, while open source licensed for non-redistributive uses, is somewhat less community driven
in terms of its development. Nevertheless, it benefits from a growing community of users who are
actively listened to by the development team. Rarely has a software project responded so vigorously
to community demand, and the community of users can be extremely responsive to other users who
need help. It's a point of pride with a lot of SQL gurus that they can write the complicated queries
that get you the results you are looking for but had struggled with for days. In many cases, they’ll
help you for nothing more than the enduring, if small, fame that comes with the archived presence
of their name on Google Groups. Try comparing that with $100 per incident support.

Summary

PHP and MySQL, individually or together, aren’t the panacea for every web development problem,
but they present a lot of advantages. PHP is built by web developers for web developers and sup-
ported by a large and enthusiastic community. MySQL is a powerful standards-compliant RDBMS
that comes in at an extremely competitive price point, even more so if you qualify for free use. Both
technologies are clear-cut cases of the community banding together to address its own needs.

static HTML and common client-side technologies. By the end, you

can expect to gain a clear understanding of what kinds of things
PHP can and cannot do for you, along with a general understanding of
how it interacts with client-side code (JavaScript, Java applets, Flash, style
sheets, and the like).

This chapter is about server-side scripting and its relationship to both

Static HTML

The most basic type of web page is a completely static, text-based one, writ-
ten entirely in HTML. Take the simple HTML-only page that Figure 2-1
shows as an example.

The following example displays the source code for the web page shown in
Figure 2-1:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">

<html>

<head>

<title>Selected Constellations</title>

</head>

<body>

<hl>Constellations</hl>

Aquila</1i>

<1i>Bootes</1i>

Cassiopeia</1i>

11

IN THIS CHAPTER

Understanding static and
dynamic web pages

Client-side versus server-side
scripting

An introduction to server-side
scripting

m Introducing PHP

<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<T1i><a
<1i><a
<1i><a
<a
<Ti><a
<1i><a
<1i><a
<1i><a

</body>
</html>

FIGURE 2-1

href="Cygnus.html">Cygnus</1i>
href="Deneb.html">Deneb</1i>
href="Draco.html">Draco</1i>
href="Gemini.html">Gemini</1i>
href="Leo.html">Leo</11>
href="Libra.html">Libra</1i>
href="Lynx.html">Lynx</1i>
href="0rion.html">0rion</1i>
href="Pegasus.html">Pegasus</1i>
href="Perseus.html">Perseus</1i>
href="Pisces.html">Pisces</1i>
href="Taurus.html">Taurus</1i>
href="Ursa_Major.html">Ursa Major</1i>
href="Ursa_Minor.html">Ursa Minor</1i>
href="Vega.html">Vega</1i>

A static HTML example

¥ selected Constellations - Mozilla Firefox i | jmi 57|
File Edit Wiew History Bookmarks Tools Help o

@ = L_:‘? ¥ @ U @ http:waw.bralngla.org,l’booksh|'| D] |"Goug\e |l-g]

Constellations

¢ Aquia

+ Bootes

+ Cassiopeia
¢ Cyonus

¢ Deneb

¢ Draco

¢ Gemnini

¢ Leo

¢ Libra

¢ Lynx

¢ Orion

+ Pegasus

¢ Perseus

+ Pisces

¢ Taurus

¢ Ursa Major
¢ Trsa Minor
e Vega

-

‘Dnne

o
Skl

12

Server-Side Scripting Overview

Client-Side Technologies

The most common additions to plain HTML are on the client side. These add-ons include formatting
extensions, such as Cascading Style Sheets (CSS) and Dynamic HTML; client-side scripting lan-
guages, such as JavaScript; VBScript; Java applets; and Flash. Support for all these technologies is (or
is not, as the case may be) built into the web browser. They perform the tasks described in Table 2-1,
with some overlap.

TABLE 2-1

Client-Side HTML Extensions

Client-Side Main Use Example Effects
Technology
Cascading Style Formatting pages: controlling size, Overlapping, different colored/sized
Sheets, Dynamic color, placement, layout, timing of fonts
HTML elements
Layers, exact positioning
Client-side Event handling: controlling Link that changes color on mouseover
scripting consequences of defined events
(JavaScript, Mortgage calculator
VBScript)

Java applets

Delivering small standalone Moving logo
applications
Crossword puzzle

Flash animations Animation Short cartoon film

The page shown in Figure 2-2 is based on the same content as that in Figure 2-1. As you can see
from the following source code, however, this example adds a bit of styling with basic inline CSS.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<html>

<head>

{STYLE TYPE="text/css">

BODY, P {color: black; font-family: verdana; font-size: 10 pt}

H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}

A:Tink, A:visited {color: #f000080; text-decoration: none}

</STYLE>

<{title>Selected Constellations</title>

</head>

<body>

<hl>Constellations</hl>

13

m Introducing PHP

Aquila</1i>

<{li>Bootes</1i>

Cassiopeia</1i>
Cygnus</1i>

<1i>Deneb</1i>

<1i>Draco</1i>

<1i>Gemini</1i>

<1i>Leo</1i>

<1i>Libra</1i>

Lynx</1i>

<1i>0rion</1i>

<1i>Pegasus</1i>
<1i>Perseus</1i>
<1i>Pisces</1i>

<1i>Taurus</1i>

<1i>Ursa Major</1i>
<1i>Ursa Minor</1i>
Vega</1i>

</body>

</html1>

FIGURE 2-2

An example of HTML plus CSS.

€ selected Constellations - Mozilla Firefox

File Edit ‘iew History Bockmarks Tools Help

=10l
£

@ - Ld:‘? x @ "ﬁLl) http:waw.bralngla.org,l’booksh|'| D] |"Goug\e

[4]

Constellations

+ Aguila

+ Bootes

+ Cassiopeia
e Cygnus

« Deneb

+ Draco

¢ Gemini

¢ leo

e Libra

¢ Lynx

« Orion

¢ Pegasus

* Perseus

+ Pisces

¢ Taurus

¢ Lrsa Major
e Ursa Minor
+ Yega

Done

0 4

14

Server-Side Scripting Overview

Unfortunately, the best thing about client-side technologies is also the worst thing about them: They
depend entirely on the browser. Wide variations exist in the capabilities of each browser and even
among versions of the same brand of browser. Individuals can also choose to configure their own
browsers in awkward ways: Some people disable JavaScript for security reasons, for example, which
makes it impossible for them to view sites that use JavaScript incorrectly or with little care.

The savvy web developer should also consider the implications of device-based browsing, universal
accessibility, and a global audience. The stubborn unwillingness of the public to upgrade is the bane
of client-side developers, causing them to frequently suffer screaming nightmares and/or existen-
tial meltdowns in the dark, vulnerable hours before dawn. The bottom-line irony is that, even after
almost 15 years of explosive web progress, the only thing that a developer can absolutely, positively
know that the client is going to see is plain text-based HTML (or, rather, the subset of HTML that’s
widely supported and has stood the tests of time and usefulness).

Server-Side Scripting

Client-side scripting is the glamorous, eye-catching part of web development. In contrast, server-side
scripting is invisible to the user. Pity the poor server-side scripters, toiling away in utter obscurity,
trapped in the no-man’s land between the web server and the database while their arty brethren bra-
zenly flash their wares before the public gaze.

Server-side web scripting is mostly about connecting web sites to backend servers, processing data
and controlling the behavior of higher layers such as HTML and CSS. This enables the following
types of two-way communication:

B Server to client: Web pages can be assembled from backend-server output.

m Client to server: Customer-entered information can be acted upon.

Common examples of client-to-server interaction are online forms with some drop-down lists (usu-
ally the ones that require you to click a button) that the script assembles dynamically on the server.

Server-side scripting products consist of two main parts: the scripting language and the scripting
engine (which may or may not be built into the web server). The engine parses and interprets pages
written in the language.

The following code shows a simple example of server-side scripting — a page assembled on the fly
from a database. We include database calls (which we don’t get around to explaining until Part II of
this book) and leave out some of the included files, because we intend this example to show the final
product of PHP rather than serve as a piece of working code.

The following PHP code shows the source on the server:
<?php

require_once('db-config.inc."');

15

m Introducing PHP

16

$dbh = mysql_connect(DB_HOST,DB_USER,DB_PASSWORD) or die("Unable to
connect to database.");
mysql_select_db('webdb') or die("Cannot access database.");
$query = "SELECT pagetitle FROM sitepages

WHERE site = 'braingia.org'

AND page_id = "1"'";
$qresult = mysql_query($query) or die("Unable to query database.");
$title = mysql_fetch_array($qresult);

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">
<html1>
<head>
(STYLE TYPE="text/css">
BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}
A:link, A:visited {color: #000080; text-decoration: none}
</STYLE>
<title><?php echo $title[0] ?></title>
</head>
<body>
<h1>$titlel01</h1>

<?php
$1inksQuery = "SELECT description,href FROM sitepagedata
WHERE site = 'braingia.org'
AND pagetitle = '"{$title}'";
$1inksResult = mysql_query($linksQuery) or die("Unable to query
database.");
while ($row = mysql_fetch_array($linksResult)) f
print "<1i>$row[0]</T1i>\n";
>

</body>
</html1>

This particular page isn't significantly more impressive to look at than the version shown in
Figure 2-2.

Compare the version with the PHP code to the HTML versions shown earlier in the chapter.

The source code that uses PHP is shorter because it retrieves the information from a database.
Nevertheless, this server-side code is never viewable by end users. The version that they see is
exactly the same as the HTML shown earlier. The only evidence that it's a PHP file is the filename
extension, . php. All the heavy lifting happens before the code gets shoved down the pipe to the
client. After emerging from the web server, the code appears on the other end as normal HTML

Server-Side Scripting Overview

and JavaScript, which also means that you can't tell which server-side scripting language was used
unless something in the header or URL gives it away (which usually is the case, as the page you are
requesting often ends with . jsp or . php). These scripts, incidentally, were written in PHP using the
MySQL database as backend; you can learn all about these techniques in Part II of this book.

Server-Side or Client-Side?

here are client-side methods and server-side methods to accomplish many tasks. When sending e-mail,

for example, the client-side way is to open up the mail client software with a preaddressed blank e-mail
message after the user clicks a MAILTO link. The server-side method is to make the user fill out a form, and
the contents are formatted as an e-mail that is sent via a Simple Mail Transfer Protocol (SMTP) server (which
very well could be the same machine that the server-side script is executing on). You can also choose between
client methods and server methods of browser-sniffing, form validation, drop-down lists, and arithmetic cal-
culation. Sometimes you see subtle but meaningful differences in functionality (server-side drop-downs can
be assembled dynamically; client-side cannot) but not always.

How to choose? Know your audience. Server-side methods are generally a bit slower at runtime because of
the extra transits they must make, but they don’t assume anything about your visitor’s browser capabilities and
take less developer time to maintain.

What Is Server-Side Scripting Good For?

Server-side scripting languages such as PHP perfectly serve most of the truly useful aspects of the
web, such as the items in this list:

Content sites (both production and display)

Community features (forums, bulletin boards, and so on)

E-mail (web mail, mail forwarding, and sending mail from a web application)
Customer-support and technical-support systems

Advertising networks

Web-delivered business applications

Directories and membership rolls

Surveys, polls, and tests

Filling out and submitting forms online

Personalization technologies

Groupware

17

m Intruducing PHP

Catalog, brochure, and informational sites
Games (for example, chess) with lots of logic but simple/static graphics

B Any other application that needs to connect a backend server (database, Lightweight
Directory Access Protocol [LDAP], and so on) to a web server

PHP can handle all these essential tasks — and then some.

But enough rhetoric! Now that you have a grasp of the differences between client-side and server-
side technologies, you can get on to the practical stuff. In Chapter 3, we show you how to get, install,
and configure PHP for yourself (or find someone to do it for youw).

Summary

To understand what PHP (or any server-side scripting technology) can do for you, having a firm
grasp on the division of labor between client and server is crucial. In this chapter, we worked
through examples of plain, static HTML; HTML with client-side additions such as JavaScript and
Cascading Style Sheets; and PHP-generated web pages as viewed from both the server and the client.

Client-side scripting can be visually attractive and quickly responsive to user inputs, but anything
beyond the most basic HTML is subject to browser variation. Static client-side scripts also require
more developer time to maintain and update, because pages cannot be dynamically generated from a
constantly changing datastore. Server-side programming and scripting languages, such as PHP, can
connect databases and other servers to web pages.

18

n this chapter, we’ll give detailed directions for installing PHP and fin-
ish with a few tips on finding the right development tool. By the end of
the chapter, you should be ready to write your first script.

Installing PHP

This section looks at the installation of PHP onto a computer. If you're going
to be using a hosting provider that provides PHP or if you have a friendly
sysadmin who has installed PHP for you, then this section will be of limited
usefulness. PHP runs on various platforms, including Linux, various Unix
flavors, Microsoft Windows, and Mac OS X. Linux is the most popular plat-
form for PHP, and when combined with the Apache web server, and MySQL
forms the acronym LAMP (although the “P” can also be Perl or Python).

If you plan to install PHP on Windows, you'll also need:

m A working PHP-supported web server. Under previous versions
of PHP, 11S/PWS was the easiest choice because a module version
of PHP was available for it; but PHP now has added a much wider
selection of modules for Windows. These days, Apache works very
well with Windows, so we’ll be focusing on PHP with Apache on
Windows.

m The PHP Windows binary distribution (download it at www . php
.net/downloads.php)

m A utility to unzip files (search http://download.cnet.com for
PC file compression utilities), if your version of Windows doesn’t
include such a utility.

19

IN THIS CHAPTER

Installing PHP

Coding in PHP

Introducing PHP

1f you plan to install PHP on Linux, you may be able to take advantage of your distribution’s PHP
package. Most Linux distributions, including Red Hat, Debian, SuSE, and Ubuntu, include PHP as
an available package, and, where possible, you should use the distribution’s official PHP package.

There are certain instances where you need to compile PHP from source, in order to take advantage
of a bleeding-edge feature, for example, but these are the rare exceptions. It is much easier and much
more stable to use the distribution’s PHP package.

Additionally, you need a web server that supports PHP. Most of the time this will be the Apache web
server, but others work well with PHP. For this book, we’ll be concentrating on Apache as the web
server of choice. Therefore, you'll need to install Apache from your distribution, as well.

Installation procedures

Because of PHP’s strong commitment to cross-platform operability, there are far too many specific
installation methods to fully list here. We have tried to cover what we believe to be the most popular
platforms for PHP, but trying to write the installation instructions for every possible operating sys-
tem and web server would have resulted in a prohibitively long chapter.

Furthermore, while PHP installation procedures under Unix have been stable for years, Windows
installs have gone through quite a bit of flux since PHP4 was first released. Part of this is the result
of actions on the part of the PHP team; part of this is because of changes in the Windows product
line. PHP also runs on Macintosh OS X, and that installation has only fairly recently stabilized.

In response to such rapid change, we can only caution you that for the freshest information on
installation you should visit the PHP web site (www.php.net/docs.php) on each download. Even
if you've installed PHP a gazillion times before, there might be something new and different on the
gazillion-and-first occasion.

For those who have already successfully built an earlier version of PHP, the procedure is exactly the
same — only it takes a lot longer than before.

Your Red Hat, Mandrake, or SuSE Linux installation may have come with RPM versions
of Apache and PHP, or your Debian Linux may have come with a deb package. You must
remove these packages before compiling your new PHP! In addition, you may have RPM or apt ver-
sions of third-party servers, such as MySQL or PostgreSQL, which are generally installed differently
from their source counterparts. If you encounter problems, look in the documentation for installation
locations, or uninstall the packages and reinstall from scratch. Nevertheless, I strongly recommend
using the distribution’s version of the package unless you have specific reasons for doing otherwise.

If you choose to compile your own versions of PHP and Apache from source then you must maintain
them by hand. This means that each and every time a security update is released for either, or for a
library touching either, PHP or Apache, you need to recompile the server in order to remain up to date.
Otherwise, just use the distribution’s package. They’ll maintain the security updates, leaving you to
concentrate on things like programming PHP!

20

Getting Started with PHP

The following procedures give an overview of PHP installation on CentOS and Debian. As of this
writing, the only version of PHP officially available with these distributions is PHP5. We expect
these instructions to be valid when PHP6 becomes available with the distributions.

Installing PHP on CentOS

The YellowDog Update Manager (yum) is available with CentOS and is somewhat like the dpkg and
apt toolset from Debian. Therefore, installation of PHP and Apache on CentOS is rather trivial. From
the command-line as root, type:

yum install php

Doing so will cause the yum system to examine the system, gather any prerequisites, and inform
you of the installation’s progress. Our example system is a fresh CentOS 5.1 install with a minimal
package set. Therefore, yum needs to install several prerequisites, and a summary is shown.

After downloading the prerequisites (if necessary), yum will go about its business and install PHP.
Part of the install includes Apache, known as “httpd” in CentOS terminology. Apache 2 is installed
as part of the installation of PHP.

Apache isn’t started by default. To start it, run:

/etc/init.d/httpd start

While Apache is installed, it is firewalled by default in CentOS, meaning that you can’t get to the
web server through its default protocol and port, tcp/80. To alleviate this problem, edit /etc/
sysconfig/iptables and add this line, second from the bottom:

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j
ACCEPT

The final file looks like this:

Firewall configuration written by system-config-securitylevel
Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:QUTPUT ACCEPT [0:0]

:RH-Firewall-1-INPUT - [0:0]

-A INPUT -j RH-Firewall-1-INPUT

-A FORWARD -j RH-Firewall-1-INPUT

-A RH-Firewall-1-INPUT -i To -j ACCEPT

-A RH-Firewall-1-INPUT -p icmp --icmp-type any -j ACCEPT

-A RH-Firewall-1-INPUT -p 50 -j ACCEPT

-A RH-Firewall-1-INPUT -p 51 -j ACCEPT

-A RH-Firewall-1-INPUT -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp -m udp --dport 631 -j ACCEPT

-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 631 -j ACCEPT

21

m Introducing PHP

22

-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j

ACCEPT

-A RH-Firewall-1-INPUT -m state —state NEW -m tcp -p tcp —dport 80 -j
ACCEPT

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
COMMIT

Restart the iptables firewall by running;
/etc/init.d/iptables restart

With that, you'll be able to access your web server with PHP enabled by visiting http://your
.1p.address/ in the browser. For example, my CentOS computer is 192.168.1.155 and so pointing
to that in the web browser looks like this:

http://192.168.1.155
You may also want to install MySQL through the yum installer and the PHP/MySQL libraries:

yum install mysqgl php-mysqgl mysqgl-server mysqgl-devel

Installing PHP on Debian

Installation of PHP (or really anything) on Debian is probably the easiest and most manageable of all
Linux distributions with which I've worked (and that's more than a few). Installation of the Debian
PHP package is done through the apt-get utility:

apt-get install Tibapache2-mod-phpb

B This example shows the installation of the PHP5 module on Debian because the PHP6
“ module was not yet available at the time of this writing.

This will install not only the PHP module for Apache 2 but also Apache 2 itself, if the web server
software hasn't already been installed.

Once installed, the web server is ready to use. You'll find the default location for PHP files at /var/
www/ apache2-default/, though that location may change in future releases of Debian.

Installing PHP from source

In the following directions, you will type the code fragments into each shell prompt, substituting the
version of software shown in the examples for the version that you're compiling.

You'll need a C compiler, with GCC being a good choice. On Debian you can install gcc by typing
apt-get install gcc, whereas on CentOS you can install GCC by typing yum install gcc.

You'll also need ICU (International Components for Unicode) for Unicode support. On CentOS, this
is installed with yum install icu libicu-devel.

Getting Started with PHP

Finally, you'll also need development libraries for libxml, which can be installed on CentOS through
the libxml2-devel package, yum install Tibxml2-devel.

1f you'll be using MySQL you can install it and the libraries from the command line with the yum
installer:

yum install mysqgl mysql-server mysql-devel

Remember to log in as the root user first if you are installing in a root-owned directory.
Remember to stop and uninstall your previous Apache server if you had one.

To start your build, just follow these steps:

1. If you haven't already done so, unzip and untar your Apache source distribution. Unless
you have a reason to do otherwise, /usr/Tocal is the standard place to do so.

tar -zxvf httpd-2.2.x.tar.gz

2. Build the Apache server: If you are installing somewhere other than /usr/local, thisis
the time to say so with the --prefix flag as follows. If you are installing in /usr/local,
don’t worry that the apache directory mentioned in a moment doesn'’t exist — it will by
the end of the build process. The --enable-so flag will allow Apache to load PHP sup-
port (and many other things) as a module called a Shared Object. This is how you'll build
your PHP module later on. After the configuration finishes, the next two commands will
build the binaries and then drop everything in the appropriate place according to the target
of the --prefix flag.
cd apache_2.2.x
./configure --prefix=/usr/local/apache --enable-so
make
make install

3. Unzip and untar your PHP source distribution. Unless you have a reason to do otherwise,
/usr/Tlocal is the standard place to do so.

tar -zxvf php-6.x.tar.gz
cd php-6.x

4. Conlfigure your PHP build. (Configuring PHP is a topic so large and important that it
would not fit into this chapter, so please {lip over to Chapter 29 for more information.)
The most common options are the ones to build as an Apache module, which you almost
certainly want, and to do so with specific database support. The example build here is an
Apache module with MySQL support, built using apxs.

./configure
--with-apxs2=/usr/local/apache/bin/apxs
--with-mysql

5. Make and install the PHP module.

make
make install

23

m Introducing PHP

10.

Install the php.ini file. Edit this file to get configuration directives; see the options listed
in Chapter 29. At this point, we highly recommend that new users set error reporting to
E_ALL on their development machines.

cd ../../php-6.x
cp php.ini-dist /usr/local/lib/php.ini

Tell your Apache server what extension(s) you want to identify PHP files (. php is the stan-
dard, but you can use .htm1, .phtm1, or whatever you want). Go to your HTTP configura-
tion files (/usr/local/apache/conf or whatever your path is), and open httpd.conf
with a text editor. Add at least one PHP extension directive, as shown in the first line of
code that follows. In the second line, we’ve also added a second handler to have all HTML
files parsed as PHP (which does impose a small performance hit and should not be done if
your architecture uses the . html file extension strictly for HTML-only files). This would
also be a good time for you to ensure that Apache knows what domain alias or IP address
to listen for. (If you have no idea what this means, search httpd.conf for the word
ServerName, add the word Tocalhost right after it, and use that as your domain name
until you get a better one.)

AddType application/x-httpd-php .php

AddType application/x-httpd-php .html

Restart your server. Every time you change your HTTP configuration or php. ini files, you
must stop and start your server again. An HUP signal will not suffice.

cd ../bin
./apachectl start

Set the document root directory permissions to world-executable. The actual PHP files in
the directory need only be world-readable (644). If necessary, replace /home/httpd with
your document root in the code that follows.

chmod 755 /home/httpd/html/php

Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your web server’s docu-
ment root as info.php. Start any web browser and browse the file — you must always
use an HTTP request (http://www.example.com/info.phporhttp://localhost/
info.phporhttp://127.0.0.1/info.php) rather than a filename (/home/httpd/
info.php) for the file to be parsed correctly. You should see a long table of information
about your new PHPG6 installation. Congratulations!

| Many Apache production servers do not use a php. ini file; it can be undesirable to
have two different configuration files in two different locations. You can replicate many

of the configuration directives of php.ini in your Apache httpd.conf file. At a minimum, you prob-
ably want to set the include path and error-reporting levels, because the default settings for these are
often unsatisfactory. See Chapter 29 for more details.

24

Getting Started with PHP

Microsoft Windows and Apache

As with the LAMP (Linux/Apache/MySQL/Perl/PHP/Python) stack, the last several years has seen
a rise in the WAMP stack (Windows/Apache/MySQL/Perl/PHP/Python). If Microsoft Windows is
your OS of choice, then youwll have no problem running any of these popular packages, just like
your Linux brethren. Apache, PHP, and MySQL all offer installers and source code for Windows.
This section examines installation on Microsoft Windows Server 2008, Windows Server 2003, and
Windows Vista.

Server 2003.

I Microsoft Windows XP is still quite popular on the desktop, and installation of these
components on Windows XP is roughly the same as the installation on Windows

To install Apache with PHP on Microsoft Windows Vista and Windows Server 2003 and 2008:

1.

Download Apache server from http://httpd.apache.org/download.cgi. You want
the current stable release version with the no_src.msi extension (You can try the .exe
version if there is one, but it doesn’t work on all systems and isn’t any easier). Once down-
loaded, double-click the installer file to install. The installer will run through a wizard. For
our intents and purposes in this book, you can accept the defaults. As you gain experience
with the Apache server, you may find that you want to adjust and tweak the configuration,
but for now, the defaults are fine.

You may need to stop Internet Information Server (IIS) in Windows prior to starting
Apache, since both will attempt to listen on TCP port 80. You may also need to allow
Apache through the firewall in Windows. In Vista, this is accomplished through the
Security Center Control Panel in Windows Vista. Specifically, by using the “Allow a pro-
gram through Windows Firewall” option, clicking on Add Port, and then configuring TCP
port 80 within the Add a Port dialog. In Windows Server 2008, the Windows Firewall with
Advanced Security applet is found in Administrative Tools. Within the Windows Firewall
with Advanced Security applet, clicking on Inbound Rules on the left and then New Rule
on the right will result in a New Inbound Rule Wizard. Follow the wizard to add a TCP
port of 80 inbound.

Next, download PHP from www.php.net/downloads.php. If there’s an installer avail-
able, get it. Otherwise get the zip file version. If you download the installer, then you can
merely follow through the Installation Wizard. Otherwise, for the zip version of PHP,
extract the PHP binary archive using your unzip utility placing it in C: \PHP.

Copy some .d11 files from your PHP directory to your system directory (usually C:\
Windows\System32). You need php6ts.d11 for every case. You will also probably need
to copy the file corresponding to your web server module — C:\PHP\php6apache?2_2.
d11 — to your Apache modules directory. It’s possible that you will also need other files
from the d11s subfolder — but start with the two mentioned previously and add more

if you need them. For instance, it’s quite common to need to copy 1ibmysql.d11 from
C:\PHP to C:\Windows\System32 as well, so you might as well copy it there now. In
Windows Vista, I've found that the easiest way to do this is to right-click on the command
prompt, select Run as Administrator, and then copy the files using the copy command, as
in copy c:\php\php6ts.dll c:\windows\system32\.

25

m Introducing PHP

26

4. Rename either php.ini-dist or php.ini-recommended (preferably the latter) as php.
ini within your C: \PHP directory. Open this file in a text editor (for example, Notepad).
Edit this file to get configuration directives; see the options listed in Chapter 29. At this
point, we highly recommend that new users set error reporting to E_ALL on their devel-
opment machines. Note that it’s not strictly necessary to edit the file at this time, but you
should be familiar with its contents nonetheless.

5. Go to your HTTP configuration files (C: \Program Files\Apache Software
Foundation\Apache2.2\conf or whatever your path is), and open httpd.conf with a
text editor. Add the PHP module load directive as shown in the first line of the following
code and add the handler for .php and .phtm1 files, too:

LoadModule php6_module modules/php6apache2_2.d11
AddType application/x-httpd-php .php .phtml

6. Stop and restart the WWW service. Go to the Start menu => All Programs = Apache
HTTP Server 2.2 = Control Apache HTTP Server = Stop/Start; or Restart, or even run
Apache from the MS-DOS prompt.

7. Open a text editor (for example, Notepad). Type: <?php phpinfo(); ?>. Save this
file in your web server’s document root (C: \Program Files\Apache Software
Foundation\Apache2.2\htdocs by default) as info.php. Start any web browser and
request the file: http://1ocalhost/info.phporhttp://127.0.0.1/info.php). You
should see a long table of information about your new PHP6 installation. Congratulations!
If things didn’t go as planned, check the error log for Apache, usually located at C: \
Program Files\Apache Software Foundation\Apache\logs\error.log.

| If you follow these directions and don’t get the results you expected, don’t panic! Check
out Chapter 10 for common gotchas and quirks. If that doesn’t help, check out the com-
ments on the relevant pages in the PHP online manual — users leave specific tips for specific setups
they’ve had problems with.

Other web servers

PHP has been successfully built and run with many other web servers, such as Netscape Enterprise
Server, Xitami, Zeus, and thttpd. Module support for AOLServer, NSAPI, and fhttpd is available. See
the relevant pages on the PHP online manual’s installation section.

Development tools

When it comes to development tools, PHP used to fall between the cracks — between tools origi-
nally designed for other programming languages and those mainly used to create pretty HTML. It’s
certainly possible to write a complex 2000-line program that touches several other services and file-
systems and outputs the string 1 to the browser on completion. On the other hand, there are many
people whose main use of PHP is to slap common headers and footers on what amounts to a bunch
of static HTML pages. With such a diversity of usages, it's perhaps not so amazing that the perfect
PHP development environment — user-friendly enough for the designers, but light and powerful
enough for the geeks — has been elusive.

Getting Started with PHP

Those coming to PHP from a strictly client-side perspective probably have the hardest adjustment
to make. There’s no such thing as a plush development environment with wizards and drag-
and-drop icons and built-in graphics manipulation. If that sort of thing is important to you, you
can use a WYSIWYG editor to format the page and then add PHP functionality later using a text
editor. The downside of this strategy is, of course, that machine-written code is often not very
human-readable — but one must suffer to be pretty.

The last year and a half, however, has seen substantial change in the market. Plenty of editors for
both Windows and Linux now offer at least syntax highlighting for PHP. Several of these can map
drive locations to server names, so you can debug in place.

Be particularly careful with using Microsoft FrontPage or Adobe Dreamweaver as a PHP
editor, as they both leave something to be desired for PHP development. .

Old-school programmers will have less of a learning curve, since they can treat PHP like any other
server-side programming language that may or may not happen to output HTML to a browser. Most
PHP users in this category seem to prefer simple text editors. Generally, these products will afford
you a modest amount of help, such as syntax highlighting, brace matching, or tag closing — most of
which is about helping you avoid stupid mistakes rather than actually writing the script for you.

My favorite is good old Vi, or Vi-Enhanced, Vim, although many people have problems using Vi.
An excellent GUI tool is Eclipse. I've been using Eclipse for quite some time and feel comfortable
recommending it for development in PHP, JavaScript, HTML, and just about any other language.
Get Eclipse from www.eclipse.org.

What’s to Come?

The remainder of this chapter looks at some basics of PHP, focusing on getting you up to speed for
the rest of the book!

Your HTML Is Already PHP-Compliant!

PHP is already perfectly at home with HTML — in fact, it is generally embedded within HTML. As
you'll see in later chapters, PHP rides piggyback on some of the cleverer parts of the HTML stan-
dard, such as forms and cookies, to do all kinds of useful things.

Anything compatible with HTML on the client side is also compatible with PHP. PHP could not care
less about chunks of JavaScript, calls to music and animation, applets, or anything else on the client
side. PHP will simply ignore those parts, and the web server will happily pass them on to the client.

It should be clear that you can use any method of developing web pages and simply add PHP to that
method. If you're comfortable having teams work on each page using huge multimedia graphics
suites, you can keep doing that. The general point is that you don’t need to change tools or workflow
order, just do what you've been doing and add the server-side functionality at the end.

27

m Introducing PHP

Escaping from HTML

By now you're probably wondering: How does the PHP parser recognize PHP code inside your
HTML document? The answer is that you tell the program when to spring into action by using
special PHP tags at the beginning and end of each PHP section. This process is called escaping from
HTML or escaping into PHP.

Not to confuse you, but escape in this sense should not be confused with another com-
: mon use of the term escape in PHP: putting a backslash in front of certain special charac-
ters (such as tab and newline) within double-quoted strings. Escaping strings is explained in Chapter 7.

Everything within these tags is understood by the PHP parser to be PHP code. Everything outside of
these tags does not concern the server and will simply be passed along and left for the client to sort
out whether it's HTML or JavaScript or something else.

There are several styles of PHP, but it’s best to stick with the tried-and-true tags that will always
work no matter which version of PHP you're using;

Canonical PHP tags

The most universally effective PHP tag style is:
<tphp ?>

1f you use this style, you can be positive that your tags will always be correctly interpreted. Unless
you have a very, very strong reason to prefer another style, use this one. Some or all of the other
styles of PHP tag may be phased out in the future — only this one is certain to be safe.

Hello World

Now you're ready to write your first PHP program. Open a new file in your preferred editor. Type:

<HTML>
<HEAD>
KTITLE>My first PHP program</TITLE>
</HEAD>

<BODY>

<?php

print("Hello, World
\n");
phpinfo();

?>

</BODY>

</HTML>

In most browsers, nothing but the PHP section is strictly necessary; however, it's a good idea to get
in the habit of always using a well-formed HTML structure in which to embed your PHP.

28

Getting Started with PHP

If you don’t see something pretty close to the output shown in Figure 3-1, you have a problem —
most likely some kind of installation or configuration glitch. Review Chapter 2 and make doubly
sure that your installation succeeded.

FIGURE 3-1

Your first PHP script

elox 3
Fle Edt Wew Mgtory Goomarks ook el]

Q- - @ O D e el e =[] iG] &)
Hello World

PHP Credits

Configuration
PHP Core

N T— 1 2

Refer back to Chapter 2 for installation instructions and forward to Chapter 29 for configuration
options. Chapter 10 diagnoses some common early problems and gives debugging hints.

29

m Introducing PHP

30

Jumping in and out of PHP mode

At any given moment in a PHP script, you are either in PHP mode or you're out of it in HTML.
There’s no middle ground. Anything within the PHP tags is PHP; everything outside is plain HTML,
as far as the server is concerned.

You can escape into PHP mode with giddy abandon, as often and as briefly or lengthily as necessary.
For example:

<?php $id = 1; 7>

<FORM METHOD="POST" ACTION="registration.php"">
<P>First name:

<INPUT TYPE="TEXT" NAME="firstname" SIZE="20">
<P>Last name:

<INPUT TYPE="TEXT" NAME="Tastname" SIZE="20">
<P>Rank:

<INPUT TYPE="TEXT" NAME="rank" SIZE="10">
<INPUT TYPE="HIDDEN" NAME="serial number" VALUE="<?php
echo $id; 72>">

<INPUT TYPE="submit"SUBMIT" VALUE="INPUT"">
</FORM>

Notice that things that happened in the first PHP mode instance — in this case, a variable being
assigned — are still valid in the second. In Chapter 4, you'll learn more about what happens to vari-
ables when you skip in and out of PHP mode. In Chapter 32, you'll also learn about different styles
of using PHP mode.

Including files

Another way you can add PHP to your HTML is by putting it in a separate file and calling it by using
PHP’s include functions. There are four include functions:

m include('/filepath/filename")

B require('/filepath/filename')

m include_once('/filepath/filename")
]

require_once('/filepath/filename")

In previous versions of PHP, there were significant differences in functionality and speed between
the include functions and the require functions. This is no longer true; the two sets of functions
differ only in the kind of error they throw on failure. Include () and include_once() will merely
generate a warning on failure, while require() and require_once() will cause a fatal error and
termination of the script.

As suggested by the names of the functions, include_once() and require_once() differ from
simple include() and require() in that they will allow a file to be included only once per PHP
script. This is extremely helpful when you are including files that contain PHP functions, because

Getting Started with PHP

redeclaring functions results in an automatic fatal error. In larger PHP systems, it’s quite common
to include files that include other files that include other files — it can be difficult to remember
whether you've included a particular function before, but with include_once() or require_
once() you don't have to.

How do you decide on a preferred include function? In essence, you must decide whether you
want to force yourself to write good code on pain of fatal error or whether you want it to run regard-
less of certain common errors on your part. The strictest alternative is require (), which will bring
everything grinding to a halt if your code isn't perfect; the least strict is include_once (), which
will good-naturedly hide the consequences of some of your bad coding habits.

The most common use of PHP’s include capability is to add common headers and footers to all the
web pages on a site. For example, a simple header file (cleverly named header.php) might look
like this:

<HTML>

<HEAD>

KTITLEDA site title</TITLED>
</HEAD>

<BODY>

Similarly, a footer file called footer.php might consist of:

<P>Copyright 1995 - 2002</P>
</B0ODY>
</HTML>

They are called from a PHP page this way:

<?php
require_once($_SERVER['DOCUMENT_ROOT'].'/header.php');
7>

<P>This is some body text for this particular page.</P>
<?php
require_once($_SERVER['DOCUMENT_ROOT'].'/footer.php');
7>

Obviously, this single move greatly enhances the maintainability and scalability of an entire site.
Now, if you want a different look and feel or if you need to update the copyright notice, you can alter
one file instead of identical lines in dozens of HTML pages.

B When including files, remember to set the include_path directive correctly in your
php.ini file. Remember that you can include files from above or entirely outside your
web tree by proper use of this directive. See Chapter 29 for more information.

As you can see from the preceding example, PHP’s inc1lude functions simply pass along the con-
tents of the included file as text. Many people think that because an include function occurs inside
PHP mode, the included file will also be in PHP mode. This is not true! Actually, the server escapes

31

Introducing PHP

32

back into HTML mode at the beginning of each included file and silently returns to PHP mode at the
end, just in time to catch the semicolon.

As always, you need to say when you intend something to be PHP by using PHP opening and closing
tags. Any part of an included file that needs to be executed as PHP should be enclosed in valid PHP
tags. If the entire file is PHP (very common in files of functions), the entire file must be enclosed
within PHP tags.

Take the following file, database.php:

$db = mysql_connect('localhost', 'db_user', 'db_password');
mysql_select_db('my_database');

We can’t emphasize this enough: If you're having problems including PHP files, par-
" ticularly if you’re seeing output you don’t expect or not seeing output you do expect, be
ABSOLUTELY POSITIVE that you’ve put PHP tags at the beginning and end of the included file.

If you were to foolishly include this file from a PHP script, your database variables would be visible
to the world in plain text — because you neglected to use PHP tags, the parser assumes that this
block of code is HTML. A correct version of the database. php file would look like this:

<?php

$db = mysql_connect('localhost', 'db_user', 'db_password');
mysql_select_db('my_database');

7>

For all PHP files included from other files, you must ensure that there are no empty new
" lines at the end of the file. Remember, anything outside a PHP block is considered HTML,
even a blank line. Blank lines, or even blank spaces outside a closing PHP tag, will be interpreted as
output. If you include the file in a situation where you cannot have output — say before using HTTP
headers — your script will fail with a big error message about the output stream having already been
started in your included file. See Chapter 10 for an example.

Summary

This chapter gets you up to speed with PHP, beginning with installation instructions for the several
common platforms. Finally, some coding was shown in this chapter through the venerable “Hello
World” example, illustrating not only that your PHP installation is working, but also that you can
code in PHP!

n this chapter, we cover the basic syntax of PHP — the rules that all

well-formed PHP code must follow. We explain how to use variables to

store and retrieve information as your PHP code executes and the type
of system that governs what kinds of values can be stored in the first place.
Finally, we look at the simplest ways to display text that will show up in
your user’s browser window.

PHP Is Forgiving

The first and most important thing to say about the PHP language is that

it tries to be as forgiving as possible. Programming languages vary quite

a bit in terms of how stringently syntax is enforced. Pickiness can be a
good thing because it helps make sure that the code you're writing is really
what you mean. If you are writing a program to control a nuclear reactor
and you forget to assign a variable, it is far better to have the program be
rejected than to create behavior different from what you intended. PHP’s
design philosophy, however, is at the other end of the spectrum. Because
PHP started life as a handy utility for making quick web pages, it empha-
sizes convenience for the programmer over correctness; rather than have a
programmer do the extra work of redundantly specifying what is meant by
a piece of code, PHP requires the minimum and then tries its best to figure
out what was meant. Among other things, this means that certain syntacti-
cal features that show up in other languages, such as variable declarations
and function prototypes, are simply not necessary.

33

IN THIS CHAPTER

Understanding the basic rules
of PHP

Storing information in variables

Constants, variables, and data
types

Output to HTML

m Introducing PHP

34

With that said, though, PHP can't read your mind; it has a minimum set of syntactical rules that
your code must follow. Whenever you see the words parse error in your browser window instead
of the cool web page you thought you had just written, it means that you've broken these rules to the
point that PHP has given up on your page.

HTML Is Not PHP

The second most important thing to understand about PHP syntax is that it applies only within PHP.
Because PHP is embedded in HTML documents, every part of such a document is interpreted as
either PHP or HTML, depending on whether that section of the document is enclosed in PHP tags.

PHP syntax is relevant only within PHP, so we assume for the rest of this chapter that PHP mode is
in force — that is, most code fragments will be assumed to be embedded in an HTML page and sur-
rounded with the appropriate tags.

PHP’s Syntax Is C-Like

The third most important thing to know about PHP syntax is that, broadly speaking, it is like the

C programming language. If you happen to be one of the lucky people who already know C, this is
very helpful; if you are uncertain about how a statement should be written, try it first the way you
would do it in C, and if that doesn’t work, look it up in the manual. The rest of this section is for the
other people, the ones who don't already know C. (C programmers might want to skim the headers
of this section and also see Appendix A, which is specifically for C programmers.)

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,
and carriage returns (end-of-line characters). PHP’s whitespace insensitivity does not mean that
spaces and such never matter. (In fact, they are crucial for separating the words in the PHP lan-
guage.) Instead, it means that it almost never matters how many whitespace characters you have in
a row — one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable
$four is equivalent:

$four = 2 + 2; // single spaces

$four <tab>=<tab>2<tab>+<{tab>2 ; // spaces and tabs
$four =

2

+

2; // multiple lines

Learning PHP Syntax and Variables

The fact that end-of-line characters count as whitespace is handy, because it means you never have
to strain to make sure that a statement fits on a single line.

PHP is sometimes case sensitive

Having read that PHP isn't picky, you may be surprised to learn that it is sometimes case sensitive
(that is, it cares about the distinction between lowercase and capital letters). In particular, all vari-
ables are case sensitive. If you embed the following code in an HTML page:

<{?php
$capital = 67;
print("Variable capital is $capital
");
print("Variable CaPiTalL is $CaPiTaL
");
7>

The output you will see is:

Variable capital is 67
Variable CaPiTal is

The different capitalization schemes make for different variables. (Surprisingly, under the default
settings for error reporting, code like this fragment will not produce a PHP error — see the section
“Unassigned variables,” later in this chapter.)

On the other hand, unlike in C, function names are not case sensitive, and neither are the basic lan-
guage constructs (i f, then, else, while, and the like).

Statements are expressions terminated
by semicolons

A statement in PHP is any expression that is followed by a semicolon (;). If expressions correspond

to phrases, statements correspond to entire sentences, and the semicolon is the full stop at the end.
Any sequence of valid PHP statements that is enclosed by the PHP tags is a valid PHP program. Here
is a typical statement in PHP, which in this case assigns a string of characters to a variable called
$greeting:

$greeting = "Welcome to PHP!";

The rest of this subsection is about how such statements are built from smaller components and how
the PHP interpreter handles the evaluation of statements. (If you already feel comfortable with state-
ments and expressions, feel free to skip ahead.)

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159), strings
("two"), variables ($two), constants (TRUE), and the special words that make up the syntax of PHP

35

m Introducing PHP

36

itself (i f, else, and so forth). These are separated from each other by whitespace and by other spe-
cial characters such as parentheses and braces.

The next most complex building block in PHP is the expression, which is any combination of tokens
that has a value. A single number is an expression, as is a single variable. Simple expressions can
also be combined to make more complicated expressions, usually either by putting an operator

in between (for example, 2 + (2 + 2)) or by using them as input to a function call (for example,
pow(2 * 3, 3 *2)). Operators that take two inputs go in between their inputs, whereas functions
take their inputs in parentheses immediately after their names, with the inputs (known as argu-
ments) separated by commas.

Expressions are evaluated

Whenever the PHP interpreter encounters an expression in code, that expression is immediately
evaluated. This means that PHP calculates values for the smallest elements of the expression and suc-
cessively combines those values connected by operators or functions, until it has produced an entire
value for the expression. For example, successive steps in an imaginary evaluation process might
look like:

$result 2 %2 +3*3+5;
+ 3 3+ 5) //imaginary evaluation steps
+ 9 5

)

*
+
+ 5)

(= 4
(=4
(=13

(= 18)

with the result that the number 18 is stored in the variable $result.

Precedence, associativity, and evaluation order

There are two kinds of freedom PHP has in expression evaluation: how it groups or associates sub-
expressions and the order in which it evaluates them. For example, in the evaluation process just
shown, multiplications were associated more tightly than additions, which affects the end result.

The particular ways that operators group expressions are called precedence rules — operators that
have higher precedence win in grabbing the expressions around them. If you want, you can memo-
rize the rules, such as the fact that * always has higher precedence than +. Or you can just use the
following cardinal rule: When in doubt, use parentheses to group expressions.

For example:

$resultl
$result?

2+ 3 *4+5; // is equal to 19
(2 +3) * (4 +5); // is equal to 45

Operator precedence rules remove much of the ambiguity about how subexpressions are associated.
But what about when two operators have the same precedence? Consider this expression:

$how_much = 3.0 / 4.0 / 5.0;

Learning PHP Syntax and Variables

Whether this is equal to 0.15 or 3.75 depends on which division operator gets to grab the num-
ber 4.0 first. There is an exhaustive list of rules of associativity in the online manual, but the rule
to remember is that associativity is usually left-before-right — that is, the preceding expression
would evaluate to 0.15, because the leftmost of the two division operators wins the dispute over
precedence.

The final wrinkle is order of evaluation, which is not quite the same thing as associativity. For
example, look at the arithmetic expression:

3*4+5*6

We know that the multiplications will happen before the additions, but that is not the same as
knowing which multiplication PHP will perform first. In general, you need not worry about evalua-
tion order, because in almost all cases it will not affect the result. You can construct weird examples
where the result does depend on order of evaluation, usually by making assignments in subexpres-
sions that are used in other parts of the expression. For example:

$huh = ($this = $that + 5) + ($that = $this + 3); // BAD

But don't do this, okay? PHP may or may not have a predictable order of evaluation of expressions,
but you shouldn’t depend on it — so we’re not going to tell you! (The one legitimate use of relying on
left-to-right evaluation order is in short-circuiting Boolean expressions, which we cover in Chapter 5.)

Expressions and types

Usually, the programmer is careful to match the types of expressions with the operators and func-
tions that combine them. Common expressions are mathematical (with mathematical operators
combining numbers) or Boolean (combining true-or-false statements with ands and ors) or string
expressions (with operators and functions constructing strings of characters). As with the rest of PHP,
however, the treatment of types is surprisingly forgiving. Consider the following expression, which
deliberately mixes the types of subexpressions in an inappropriate way:

2 + 2 * "nonsense" + TRUE

Rather than produce an error, this evaluates to the number 3. (You can take this as a puzzle for now,
but we will explain how such a thing can happen in the “Types in PHP” section of this chapter.)

Assignment expressions

A very common kind of expression is the assignment, where a variable is set to equal the result of
evaluating some expression. These have the form of a variable name (which always starts with a $),
followed by a single equal sign, followed by the expression to be evaluated. For example:

$eight = 2 * (2 * 2);

assigns the variable $eight the value you would expect.

37

m Introducing PHP

38

An important thing to remember is that even assignment expressions are expressions and so have val-
ues themselves! The value of an expression that assigns a variable is the same as the value assigned.
This means that you can use assignment expressions in the middle of more complicated expressions.
If you evaluate the statement:

$ten = ($two = 2) + ($eight =2 * (2 * 2));

each variable would be assigned a numerical value equal to its name.

Reasons for expressions and statements

There are usually only two reasons to write an expression in PHP: for its value or for a side effect. The
value of an expression is passed on to any more complicated expression that includes it; side effects
are anything else that happens as a result of the evaluation. The most typical side effects involve
assigning or changing a variable, printing something to the user’s screen, or making some other per-
sistent change to the program’s environment (such as interacting with a database).

Although statements are expressions, they are not themselves included in more complicated expres-
sions. This means that the only good reason for a statement is a side effect! It also means that it is
possible to write legal (yet totally useless statements) such as the second of these:

print("Hello"); // side effect is printing to screen
2 * 3+ 4; // useless - no side effect
$value_num = 3 * 4 + 5; // side effect is assignment

store_in_database(49.5); // side effect to DB

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence of state-
ments anywhere a statement can go by enclosing them in a set of curly braces.

For example, the 1f construct in PHP has a test (in parentheses) followed by the statement that
should be executed if the test is true. If you want more than one statement to be executed when the
test is true, you can use a brace-enclosed sequence instead. The following pieces of code (which sim-
ply print a reassuring statement that it is still true that 1 + 2 is equal to 3) are equivalent:

if (3 ==2+1)
print("Good - I haven't totally Tost my mind.
");

if (3 ==2+1)
{
print("Good - I haven't totally ");
print("lost my mind.
");

Learning PHP Syntax and Variables _

You can put any kind of statement in a brace-enclosed block, including, say, an 1 f statement that
itself has a brace-enclosed block. This means that i f statements can have other i f statements inside
them. In fact, this kind of nesting can be done to an arbitrary number of levels.

Comments

A comment is the portion of a program that exists only for the human reader. The very first thing that
a program executor does with program code is to strip out the comments, so they cannot have any
effect on what the program does. Comments are invaluable in helping the next person who reads
your code figure out what you were thinking when you wrote it, even when that person is yourself a
week from now.

PHP drew its inspiration from several different programming languages, most notably C, Perl, and
Unix shell scripts. As a result, PHP supports styles of comments from all those languages, and those
styles can be intermixed freely in PHP code.

C-style multiline comments

The multiline style of commenting is the same as in C: A comment starts with the character pair /*
and terminates with the character pair */. For example:

/* This 1is
a comment in
PHP */

The most important thing to remember about multiline comments is that they cannot be nested.
You cannot put one comment inside another. If you try, the comment will be closed off by the first
instance of the */ character pair, and the rest of what was intended to be an enclosing comment will
instead be interpreted as code, probably failing horribly. For example:

/* This comment will /* fail horribly on the
last word of this */ sentence
*/

This is an easy thing to do unintentionally, usually when you try to deactivate a block of commented
code by “commenting it out.”

Single-line comments: #and //

In addition to the /* ... */ multiple-line comments, PHP supports two different ways of comment-
ing to the end of a given line: one inherited from C++ and Java and the other from Perl and shell
scripts. The shell-script-style comment starts with a pound sign, whereas the C++ style comment
starts with two forward slashes. Both of them cause the rest of the current line to be treated as a
comment, as in the following:

This is a comment, and
this is the second Tine of the comment

39

m Introducing PHP

40

// This is a comment too. Each style comments only
// one Tine so the Tast word of this sentence will fail
horribly.

The very alert reader might argue that single-line comments are incompatible with what we said
earlier about whitespace insensitivity. That would be correct — you will get a very different result if
you take a single-line comment and replace one of the spaces with an end-of-line character. A more
accurate way of putting it is that, after the comments have been stripped out of the code, PHP code
is whitespace insensitive.

Variables

The main way to store information in the middle of a PHP program is by using a variable — a way to
name and hang on to any value that you want to use later.

Here are the most important things to know about variables in PHP (more detailed explanations
will follow):

All variables in PHP are denoted with a leading dollar sign ($).

The value of a variable is the value of its most recent assignment.

Variables are assigned with the = operator, with the variable on the left-hand side and the
expression to be evaluated on the right.

Variables can, but do not need, to be declared before assignment.
Variables have no intrinsic type other than the type of their current value.

B Variables used before they are assigned have default values.

PHP variables are Perl-like

All variables in PHP start with a leading $ sign just like scalar variables in the Perl scripting lan-
guage, and in other ways they have similar behavior (need no type declarations, may be referred to
before they are assigned, and so on). (Perl hackers may need to do no more than skim the headings
of this section, which is really for the rest of us.)

After the initial $, variable names must be composed of letters (uppercase or lowercase), digits (0-9),
and underscore characters (_). Furthermore, the first character after the $ may not be a number.

Declaring variables (or not)

This subheading is here simply because programmers from some other languages might be looking for
it — in languages such as C, C++, and Java, the programmer must declare the name and type of any
variable before making use of it. However in PHP, because types are associated with values rather than
variables, no such declaration is necessary — the first step in using a variable is to assign it a value.

Learning PHP Syntax and Variables _

Assigning variables

Variable assignment is simple — just write the variable name, and add a single equal sign (=); then
add the expression that you want to assign to that variable:

$pi = 3 + 0.14159; // approximately

Note that what is assigned is the result of evaluating the expression, not the expression itself. After
the preceding statement is evaluated, there is no way to tell that the value of $pi was created by
adding two numbers together.

It’s conceivable that you will want to actually print the preceding math expression rather than evalu-
ate it. You can force PHP to treat a mathematical variable assignment as a string by quoting the
expression:

$pi = "3 + 0.14159";

Reassigning variables

There is no interesting distinction in PHP between assigning a variable for the first time and chang-
ing its value later. This is true even if the assigned values are of different types. For example, the fol-
lowing is perfectly legal:

$my_num_var = "This should be a number - hope it's reassigned";
$my_num_var = 5;

If the second statement immediately follows the first one, the first statement has essentially no effect.

Unassigned variables

Many programming languages will object if you try to use a variable before it is assigned; others
will let you use it, but if you do you may find yourself reading the random contents of some area of
memory. In PHP, the default error-reporting setting allows you to use unassigned variables without
errors, and PHP ensures that they have reasonable default values.

If you would like to be warned about variables that have not been assigned, you should
change the error-reporting level to E_ALL (the highest level possible) from the default level
of error reporting. You can do this either by including the statement error_reporting(E_ALL); at
the top of a script or by changing your php . ini file to set the default level (see Chapters 29 and 30).

Default values

Variables in PHP do not have intrinsic types — a variable does not know in advance whether it will
be used to store a number or a string of characters. So how does it know what type of default value
to have when it hasn’t yet been assigned?

41

m Introducing PHP

42

The answer is that, just as with assigned variables, the type of a variable is interpreted depend-

ing on the context in which it is used. In a situation where a number is expected, a number will be
produced, and this works similarly with character strings. In any context that treats a variable as a
number, an unassigned variable will be evaluated as 0; in any context that expects a string value, an
unassigned variable will be the empty string (the string that is zero characters long).

Checking assignment with isset

Because variables do not have to be assigned before use, in some situations you can actually convey
information by selectively setting or not setting a variable! PHP provides a function called isset
that tests a variable to see whether it has been assigned a value.

As the following code illustrates, an unassigned variable is distinguishable even from a variable that
has been given the default value:

$set_var = 0; //set_var has a value
//never_set does not

print("set_var print value: $set_var
");
print("never_set print value: $never_set
");
if ($set_var == $never_set)

print("set_var is equal to never_set!
");
if (isset($set_var))

print("set_var is set.
");
else

print("set_var is not set.
");
if (isset($never_set))

print("never_set is set.
");
else

print("never_set is not set.");

Oddly enough, this code will produce the following output:

set_var print value: 0
never_set print value:

set_var is equal to never_set!
set_var is set.

never_set is not set.

The variable $never_set has never been assigned, so it produces an empty string when a string is
expected (as in the print statement) and a zero value when a number is expected (as in the com-
parison test that concludes that the two variables are the same). Still, isset can tell the difference
between $set_var and $never_set.

Assigning a variable is not irrevocable — the function unset () will restore a variable to an unas-
signed state (for example, unset($set_var): will make $set_var into an unbound variable,
regardless of its previous assignments).

Learning PHP Syntax and Variables _

Variable scope

Scope is the technical term for the rules about when a name (for, say, a variable or function) has the
same meaning in two different places and in what situations two names spelled exactly the same
way can actually refer to different things.

Any PHP variable not inside a function has global scope and extends throughout a given “thread” of
execution. In other words, if you assign a variable near the top of a PHP file, the variable name has
the same meaning for the rest of the file; and if it is not reassigned, it will have the same value as the
rest of your code executes (except inside the body of functions and classes).

The assignment of a variable will not affect the value of variables with the same name in other
PHP files or even in repeated uses of the same file. For example, let’s say that you have two files,
startup.php and next_thing.php, which are typically visited in that order by a user. Let’s also
say that near the top of startup.php, you have the line:

$username = "Jane Q. User";

which is executed only in certain situations. Now, you might hope that, after setting that variable in
startup.php, it would also be preset automatically when the user visited next_thing.php, but
no such luck. Each time a PHP page executes, it assigns and reassigns variables as it goes, and those
variables disappear at the end of a page’s production. Assignments of variables in one file do not
affect variables of the same name in a different file or even in other requests for the same file.

Obviously, there are many situations in which you would like to hold onto information for longer
than it takes to generate a particular web page. There are a variety of ways you can accomplish this,
and the different techniques are a lot of what the rest of this book is about. For example, you can
pass information from page to page using GET and POST variables (Chapter 6), store information
persistently in a database (all of Part II of this book), associate it with a user’s session using PHP’s
session mechanism (see Chapter 24), or store it on a user’s hard disk via a cookie (see Chapter 24).

Functions and variable scope

Except inside the body of a function, variable scope in PHP is quite simple: Within any given execu-
tion of a PHP file, just assign a variable, and its value will be there for you later. We haven't yet cov-
ered how to define your own functions, but it’s worth a look-ahead note: Variables assigned within

a function are local to that function, and unless you make a special declaration in a function, that
function won't have access to the global variables defined outside the function, even when they are
defined in the same file. (We will discuss the scope of variables in functions in depth when we cover
function definitions in Chapter 5.)

You can switch modes if you want

One scoping question that we had the first time we saw PHP code was: Does variable scope persist
across tags? For example, we have a single file that looks like:

<HTML>
<HEAD>

43

m Introducing PHP

44

<?php
$username = "Jane Q. User";
7>
</HEAD>
<BODY>
<?php
print("$username
");
?>
</BODY>
</HTML>

Should we expect our assignment to $username to survive through the second of the two PHP-
tagged areas? The answer is yes — variables persist throughout a thread of PHP execution (in other
words, through the whole process of producing a web page in response to a user’s request). This is
a single manifestation of a general PHP rule, which is that the only effect of the tags is to let the PHP
engine know whether you want your code to be interpreted as PHP or passed through untouched as
HTML. You should feel free to use the tags to switch back and forth between modes whenever it is
convenient.

Constants

In addition to variables, which may be reassigned, PHP offers constants, which have a single value
throughout their lifetime. Constants do not have a $ before their names, and by convention the
names of constants usually are in uppercase letters. Constants can contain only scalar values (num-
bers and string). Constants have global scope, so they are accessible everywhere in your scripts after
they have been defined — even inside functions.

For example, the built-in PHP constant E_ALL represents a number that indicates to the error_
reporting() function that all errors and warnings should be reported. A call to error_report-
ing () might look like this:

error_reporting(E_ALL);

This is identical to calling error_reporting() on the integer value of E_ALL, but is better because
the actual value of E_ALL may change from one version of PHP to the next.

It’s also possible to create your own constants using the define() function. The code:

define(MY_ANSWER, 42);

would cause MY_ANSWER to evaluate to 42 everywhere it appears in your code. There is no way to
change this assignment after it has been made, and like variables, user-defined constants that are
not part of PHP itself do not persist across pages unless they are explicitly passed to a new page.
When created constants are used, they are generally most usefully defined in an external include file
and might be used for such information as a sales-tax rate or perhaps an exchange rate.

Learning PHP Syntax and Variables _

Types in PHP: Don’t Worry, Be Happy

All programming languages have some kind of type system, which specifies the different kinds of
values that can appear in programs. These different types often correspond to different bit-level rep-
resentations in computer memory, although in many cases programmers are insulated from having
to think about (or being able to mess with) representations in terms of bits.

PHP’s type system is simple, streamlined, and flexible, and it insulates the programmer from low-level
details. PHP makes it easy not to worry too much about typing of variables and values, both because it
does not require variables to be typed and because it handles a lot of type conversions for you.

No variable type declarations

As you saw in Chapter 3, the type of a variable does not need to be declared in advance. Instead, the
programmer can jump right ahead to assignment and let PHP take care of figuring out the type of
the expression assigned:

$first_number = 55.5;
$second_number = "Not a number at all";

Automatic type conversion

PHP does a good job of automatically converting types when necessary. Like most other modern
programming languages, PHP will do the right thing when, for example, doing math with mixed
numerical types. The result of the expression

$pi = 3 + 0.14159;

is a floating-point (double) number, with the integer 3 implicitly converted into floating point before
the addition is performed.

Types assigned by context

PHP goes further than most languages in performing automatic type conversions. Consider:

$sub = substr(12345, 2, 2);
print("sub is $sub
");

The substr function is designed to take a string of characters as its first input and return a sub-
string of that string, with the start point and length determined by the next two inputs to the func-
tion. Instead of handing the function a character string, however, we gave it the integer 12345. What
happens? As it turns out, there is no error, and we get the browser output:

sub is 34

Because substr expects a character string rather than an integer, PHP converts the number 12345
to the character string '12345", which substr then slices and dices.

45

m Introducing PHP

46

Because of this automatic type conversion, it is very difficult to persuade PHP to give a type error —
in fact, PHP programmers need to exercise a little care sometimes to make sure that type confusions
do not lead to error-free but unintended results.

Type Summary

PHP has a total of eight types: integers, doubles, Booleans, strings, arrays, objects, NULL, and resources.

Integers are whole numbers, without a decimal point, like 495.

Doubles are floating-point numbers, like 3.14159 or 49.0.

Booleans have only two possible values: TRUE and FALSE.

NULL is a special type that only has one value: NULL.

Strings are sequences of characters, like 'PHP 4.0 supports string operations.’

Arrays are named and indexed collections of other values.

Objects are instances of programmer-defined classes, which can package up both other
kinds of values and functions that are specific to the class.

B Resources are special variables that hold references to resources external to PHP (such as
database connections).

Of these, the first five are simple types, and the next two (arrays and objects) are compound — the
compound types can package up other arbitrary values of arbitrary type, whereas the simple types
cannot. We treat only the simple types in this chapter, since arrays (see Chapter 8) and objects (see
Chapter 20) need chapters all to themselves. Finally, the thorniest details of the type system, includ-
ing discussion of the resource type, are deferred to Chapter 25.

The Simple Types

The most of the simple types in PHP (integers, doubles, Booleans, NULL, and strings) should be familiar
to those with programming experience (although we will not assume that experience and will explain
them in detail). The only thing likely to surprise C programmers is how few types there are in PHP.

Many programming languages have several different sizes of numerical types, with the larger ones
allowing a greater range of values, but also taking up more room in memory. For example, the C lan-
guage has a short type (for relatively small integers), a Tong type (for possibly larger integers), and
an int type (which might be intermediate, but in practice is sometimes identical either to the short
or long type). It also has floating-point types, which vary in their precision. This kind of typing
choice made sense in an era when tradeoffs between memory use and functionality were often ago-
nizing. The PHP designers made what we think is a good decision to simplify this by having only
two numerical types, corresponding to the largest of the integral and floating-point types in C.

Learning PHP Syntax and Variables _

Integers

Integers are the simplest type — they correspond to simple whole numbers, both positive and nega-
tive. Integers can be assigned to variables, or they can be used in expressions, like this:

$int_var = 12345;
$another_int = -12345 + 12345; // will equal zero

Read formats

Integers can actually be read in three formats, which correspond to bases: decimal (base 10), octal
(base 8), and hexadecimal (base 16). Decimal format is the default, octal integers are specified with
a leading 0, and hexadecimals have a leading Ox. Any of the formats can be preceded by a - sign to
make the integer negative. For example:

$integer_10 = 1000;

$integer_8 = -01000;

$integer_16 = 0x1000;
print("integer_10: $integer_10
");
print("integer_8: $integer_8
");
print("integer_16: $integer_16
");

yields the browser output:

integer_10: 1000
integer_8: -512
integer_16: 4096

Note that the read format affects only how the integer is converted as it is read — the value stored in
$integer_8 does not remember that it was originally written in base 8. Internally, of course, these
numbers are represented in binary format; we see them in their base 10 conversion in the preceding
output because that is the default for printing and incorporating int variables into strings.

Range

How big (or small) can integers get? Because PHP integers correspond to the C Tong type, which

in turn depends on the word-size of your machine, this is difficult to answer definitively. For most
common platforms, however, the largest integer is 2°! — 1 (or 2,147,483,647), and the smallest (most
negative) integer is —(23! — 1) (or —2,147,483,647).

The PHP constant PHP_INT_MAX will tell you the maximum integer for your implementation. If you
really need integers even larger or smaller than the preceding, PHP does have some arbitrary-preci-
sion functions — see the BC section of the “Mathematics” chapter (see Chapter 27).

Doubles

Doubles are floating-point numbers, such as:

$first_double = 123.456;

47

m Introducing PHP

48

$second_double 456

= 0.
$even_double 2.0;

Note that the fact that $even_double is a “round” number does not make it an integer. Integers and
doubles are stored in different underlying formats, and the result of:

$five = $even_double + 3;

is a double, not an integer, even if it prints as 5. In almost all situations, however, you should feel
free to mix doubles and integers in mathematical expressions, and let PHP sort out the typing.

By default, doubles print with the minimum number of decimal places needed — for example, the code:

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print("$many + $many 2 = $few
");

produces the browser output:

2.28888 + 2.21112 = 4.5

I If you need finer control of printing, see the printf function in Chapter 7.

Read formats

The typical read format for doubles is -X. Y, where the - optionally specifies a negative number, and
both X and Y are sequences of digits between 0 and 9. The X part may be omitted if the number is
between —1.0 and 1.0, and the Y part can also be omitted. Leading or trailing zeros have no effect.
All the following are legal doubles:

$small_positive = 0.12345;
$small_negative -.12345;
$even_double = 2.00000;
$still_double = 2.;

In addition, doubles can be specified in scientific notation, by adding the letter e and a desired
integral power of 10 to the end of the previous format — for example, 2.2e-3 would correspond
to 2.2 x 107~. The floating-point part of the number need not be restricted to a range between 1.0
and 10.0. All the following are legal:

$small_positive = 5.5e-3;

print("small_positive is $small_positive
");
$large_positive = 2.8e+16;
print("large_positive is $large_positive
");
$small_negative = -2222e-10;
print("small_negative is $small_negative
");
$large_negative = -0.00189e6;
print("large_negative is $large_negative
");

Learning PHP Syntax and Variables

The preceding code produces the following browser output:

small_positive is 0.0055
large_positive is 2.8E+16
small_negative is -2.222E-07
large_negative is -1890

Notice that, just as with octal and hexadecimal integers, the read format is irrelevant once PHP has
finished reading in the numbers — the preceding variables retain no memory of whether or not
they were originally specified in scientific notation. In printing the values, PHP is making its own
decisions to print the more extreme values in scientific notation, but this has nothing to do with the
original read format.

Booleans

Booleans are true-or-false values, which are used in control constructs like the testing portion of
an f statement. As you will see in Chapter 5, Boolean truth values can be combined using logical
operators to make more complicated Boolean expressions.

Boolean constants

PHP provides a couple of constants especially for use as Booleans: TRUE and FALSE, which can be
used like this:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Interpreting other types as Booleans
Here are the rules for determine the “truth” of any value not already of the Boolean type:

m If the value is a number, it is false if the number is zero and true otherwise.

If the value is a string, it is false if the string is empty (has zero characters) or is the string
"0", and is true otherwise.

B Values of type NULL are always false.

1f the value is a compound type (an array or an object), it is false if it contains no other val-
ues, and it is true otherwise. For an object, containing a value means having a member vari-
able that has been assigned a value.

m Valid resources are true (although some functions that return resources when they are suc-
cessful will return FALSE when unsuccessful).

For a more complete account of converting values across types, see Chapter 25.

49

m Introducing PHP

50

Examples
Each of the following variables has the truth value embedded in its name when it is used in a
Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true";

$true_arrayl[49] = "An array element"; // see next section
$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = ""; // a string zero characters long

Don’t use doubles as Booleans

Note that, although Rule 1 implies that the double 0.0 converts to a false Boolean value, it is danger-
ous to use floating-point expressions as Boolean expressions, because of possible rounding errors.
For example:

$floatbool = sqrt(2.0) * sqrt(2.0) - 2.0;
if ($floatbool)
print("Floating-point Booleans are dangerous!
");
else
print("It worked ... this time.
");
print("The actual value is $floatbool
");

The variable $f1oatbool is set to the result of subtracting two from the square of the square root of
two — the result of this calculation should be equal to zero, which means that $f1oatbool is false.
Instead, the browser output we get is:

Floating-point Booleans are dangerous!
The actual value is 4.4408920985006E-16

The value of $f1oatbool is very close to 0.0, but it is nonzero and, therefore, unexpectedly true.
Integers are much safer in a Boolean role — as long as their arithmetic happens only with other inte-
gers and stays within integral sizes, they should not be subject to rounding errors.

NULL

The world of Booleans may seem small, since the Boolean type has only two possible values. The
NULL type, however, takes this to the logical extreme: The type NULL has only one possible value,
which is the value NULL. To give a variable the NULL value, simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you could
just as well have typed:

$my_var = null;

Learning PHP Syntax and Variables

So what is special about NULL? NULL represents the lack of a value. (You can think of it as the non-
value or the unvalue.) A variable that has been assigned the value NULL is nearly indistinguishable
from a variable that has not been set at all. In particular, a variable that has been assigned NULL has
the following properties:

m It evaluates to FALSE in a Boolean context.
m It returns FALSE when tested with IsSet (). (No other type has this property.)

m PHP will not print warnings if you pass the variable to functions and back again, whereas
passing a variable that has never been set will sometimes produce warnings.

The NULL value is best used for situations where you want a variable not to have a value, intention-
ally, and you want to make it clear to both a reader of your code and to PHP that this is what you
want. The latter point is particularly relevant when passing variables to functions.

For example, the following pseudocode may print a warning (depending on your error-reporting
settings) if the variable $authorization has never been assigned before you pass it to your test_
authorization() function.

if (test_authorization($authorization)) {
// code that grants a privilege of some sort
t

On the other hand, code like this:

$authorization = NULL;
// code that might or might not set $authorization
if (test_authorization($authorization)) {
// code that grants a privilege of some sort
}

does not cause an unbound-variable warning, assuming that you have written test_authoriza-
tion() to handle arguments that might be NULL. It also makes clear to a reader of the code that
you intend for the variable to lack a value unless there’s a case where it is assigned.

Strings

Strings are character sequences, as in the following:

$string_1 = "This is a string in double quotes.";

$string_2 = 'This is a somewhat longer, singly quoted string';
$string_39 = "This string has thirty-nine characters.";
$string_ 0 = ""; // a string with zero characters

Strings can be enclosed in either single or double quotation marks, with different behavior at read
time. Singly quoted strings are treated almost literally, whereas doubly quoted strings replace vari-
ables with their values as well as specially interpreting certain character sequences.

51

m Introducing PHP

52

Singly quoted strings
Except for a couple of specially interpreted character sequences, singly quoted strings read in and
store their characters literally. The following code:

$literally = "My $variable will not print!\\n';
print($literally);

produces the browser output:

My $variable will not print!\n

Singly quoted strings also respect the general rule that quotation marks of a different type will not
break a quoted string. This is legal:

$singly_quoted = 'This quote mark: " is no big deal’;

To embed a single quotation mark (such as an apostrophe) in a singly quoted string, escape it with a
backslash, as in the following:

$singly_quoted = 'This quote mark\'s no big deal either';

Although in most contexts backslashes are interpreted literally in singly quoted strings, you may
also use two backslashes (\\) as an escape sequence for a single (nonescaping) backslash. This is
useful when you want a backslash as the final character in a string, as in:

$win_path = "C:\\InetPub\\PHP\\";
print("A Windows-style pathname: $win_path
");

which is displayed as:
A Windows-style pathname: C:\InetPub\PHP\

’ | We could have used single backslashes to produce the first two backslashes in the output,
e " but the escaping is necessary at the end of the string so that the closing quotation mark
will not be escaped.

These two escape sequences (\\ and \ ') are the only exceptions to the literal-mindedness of singly
quoted strings.

Doubly quoted strings

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following
two ways by PHP:

m Certain character sequences beginning with backslash (\) are replaced with special
characters.

B Variable names (starting with $) are replaced with string representations of their values.

Learning PHP Syntax and Variables _

The escape-sequence replacements are:

\n is replaced by the newline character

\r is replaced by the carriage-return character
\'t is replaced by the tab character

\'$ is replaced by the dollar sign itself ($)

\" is replaced by one double quotation mark (")

\\ is replaced by a single backslash (\)

The first three of these replacements make it easy to visibly include certain whitespace characters
in your strings. The \'$ sequence lets you include the $ symbol when you want it, without it being
interpreted as the start of a variable. The \" sequence is there so that you can include a double quo-
tation mark symbol without terminating your doubly quoted string. Finally, because the \ character
starts all these sequences, you need a way to include that character literally, without it starting an
escape sequence — to do this, you preface it with itself.

Just as with singly quoted strings, quotes of the opposite type can be freely included without an
escape character:

$has_apostrophe = "There's no problem here";

Single versus double quotation marks

PHP does some preprocessing of doubly quoted strings (strings with quotation marks like "this™")
before constructing the string value itself. For one thing, variables are replaced by their values (as in
the preceding example). To see that this replacement is really about the quoted string rather than the
print construct, consider the following code:

$animal = "antelope"; // first assignment
$saved_string = "The animal is $animal
";
$animal = "zebra"; // reassignment

print("The animal is $animal
"); //first display line
print($saved_string); //second display line

What output would you expect here? As it turns out, your browser would display:

The animal is zebra
The animal is antelope

And the browser displays the preceding output in exactly that order. This is because "antelope"
is spliced into the string $saved_string, before the $animal variable is reassigned. In addition to
splicing variable values into doubly quoted strings, PHP also replaces some special multiple-char-
acter escape sequences with their single-character values. The most commonly used is the end-of-line
sequence ("\n") — in reading a string like:

"The first Tine \n\n\nThe fourth line"

53

m Introducing PHP

oy el =t

54

Variable interpolation

Whenever an unescaped $ symbol appears in a doubly quoted string, PHP tries to interpret what
follows as a variable name and splices the current value of that variable into the string. Exactly what
kind of substitution occurs depends on how the variable is set:

m If the variable is currently set to a string value, that string is interpolated (or spliced) into
the doubly quoted string.

m If the variable is currently set to a nonstring value, the value is converted to a string, and
then that string value is interpolated.

m If the variable is not currently set, PHP interpolates nothing (or, equivalently, PHP splices
in the empty string).

For example:

$this = "this";

$that = "that";

$the_other = 2.2000000000;
print("$this,$not_set,$that+$the_other
");

produces the PHP output
this,,that+2.2

which in turn, when seen in a browser, looks like:
this,,that+2.2

If you find any part of this example puzzling, it is worth working through exactly what PHP does to
parse the string in the print statement. First, notice that the string has four $ signs, each of which
is interpreted as starting a variable name. These variable names terminate at the first occurrence of a
character that is not legal in a variable name. Legal characters are letters, numbers, and underscores;
the illegal terminating characters in the preceding print string are (in order) a comma, another
comma, the plus symbol (+), and a left angle bracket (<). The first two variables are bound to strings
("this"and 'that"), so those strings are spliced in literally. The next variable ($not_set) has
never been assigned, so it is omitted entirely from the string under construction. Finally, the last
variable ($the_other) is discovered to be bound to a double — that value is converted to a string
("2.2"), which is then spliced into our constructed string.

3 For more about converting numbers to strings, see the “Assignment and Coercion” sec-

~“REE!
“«*“*ﬁ tion in Chapter 25.

As we said earlier in this chapter, all this interpretation of doubly quoted strings happens when
the string is read, not when it is printed. If we saved the example string in a variable and printed
it out later, it would reflect the variable values in the preceding code even if the variables had been
changed in the meantime.

Learning PHP Syntax and Variables _

In addition to single quotation marks and double quotation marks, there is another way
to create strings (called the heredoc syntax), which in some ways makes it even easier to
splice in the values of variables. We cover it in Chapter 7.

Newlines in strings

Although PHP offers an escape sequence (\n) for newline characters, it is good to know that you
can literally include new lines in the middle of strings, which PHP also treats as a newline charac-
ters. This capability turns out to be convenient when creating HTML strings, because browsers will
ignore the line breaks anyway, so you can format your strings with line breaks to make your PHP
code lines short:

print ("<HTML><HEAD></HEAD><BODY>My HTML page is too big
to fit on a single Tine, but that doesn't mean that I
need multiple print statements!</BODY></HTML>");

We produced this statement in our text editor by literally hitting the Enter key at the end of the first
two lines — these newlines are preserved in the string, so the single print statement will produce
three distinct lines of PHP output. (Your mileage may vary depending on your text editor — if your
editor automatically wraps lines in displaying them, you may see three lines of code that are actu-
ally one long line.) Of course, the browser program will ignore these newlines and will make its own
decisions about whether and where to break the lines in display, but you will see the linebreaks if
you use View Source in your browser to see the HTML itself.

Limits
There are no artificial limits on string length — within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Output

Most of the constructs in the PHP language execute silently — they don't print anything to output.
The only way that your embedded PHP code will display anything in a user’s browser program is

either by means of statements that print something to output or by calling functions that, in turn,
call print statements.

Echo and print

The two most basic constructs for printing to output are echo and print. Their language status

is somewhat confusing, because they are basic constructs of the PHP language, rather than being
functions. As a result, they can be used either with parentheses or without them. (Function calls
always have the name of the function first, followed by a parenthesized list of the arguments to the
function.)

55

m Introducing PHP

56

Echo

The simplest use of echo is to print a string as argument, for example:
echo "This will print in the user's browser window.";
Or equivalently:

echo("This will print in the user's browser window.");

Both of these statements will cause the given sentence to be displayed, without displaying the quote
signs. (Note for C programmers: Think of the HTTP connection to the user as the standard output
stream for these functions.)

You can also give multiple arguments to the unparenthesized version of echo, separated by commas,
asin:

echo "This will print in the ", "user's browser window.";

The parenthesized version, however, will not accept multiple arguments:

echo ("This will produce a ", "PARSE ERROR!");

Print

The command print is very similar to echo, with two important differences:

m Unlike echo, print can accept only one argument.

m Unlike echo, print returns a value, which represents whether or not the print statement
succeeded.

The value returned by print is always 1.

Both echo and print are usually used with string arguments, but PHP’s type flexibility means that
you can throw pretty much any type of argument at them without causing an error. For example, the
following two lines will print exactly the same thing;

print("3.14159"); // print a string
print(3.14159); // print a number

Technically, what is happening in the second line is that, because print expects a string argument,
the floating-point version of the number is converted to a string value before print gets hold of it.
However, the effect is that both print and echo will reliably print out numbers as well as string
arguments.

For the sake of simplicity and uniformity, we will typically use the parenthesized version of print
in our examples, rather than using echo.

Learning PHP Syntax and Variables

3 F"“:ﬁ In addition to the printing functions discussed here, there are two primary printing func-
A ARk tions used mostly for debugging: print_r () and var_dump (). The point of these func-
tions is to help you visualize what’s going on with compound data structures like arrays, so we cover
them along with the details of arrays in Chapter 8.

Variables and strings

C programmers are accustomed to using a function called printf, which allows you to splice values
and expressions into a specially formatted printing string. PHP has analogous functions (which we
will cover in Chapter 6), but as it turns out we can get much of the same functionality just by using
print (or echo) with quoted strings. For example, the fragment:

$animal = "antelope";

$animal_heads = 1;

$animal_legs = 4;

print("The $animal has $animal_heads head(s).
");
print("The $animal has $animal_legs Teg(s).
");

will produce the following output in the browser:

The antelope has 1 head(s).
The antelope has 4 leg(s).

The values for the variables we included in the string have been neatly spliced into the printed out-
put. This makes it very easy to quickly produce web pages with content that varies depending on
how variables have been set. It is not the result of any magical properties of print, however — the
magic is really happening in the interpretation of the quoted string itself.

HTML and linebreaks

One mistake often made by new PHP programmers (especially those from a C background) is to

try to break lines of text in their browsers by putting end-of-line characters ("\n") in the strings
they print. To understand why this doesn’t work, you have to distinguish the output of PHP (which
is usually HTML code, ready to be sent over the Internet to a browser program) from the way that
output is rendered by the user’s browser. Most browser programs will make their own choices about
how to split up lines in HTML text, unless you force a line break with the
 tag. End-of-line
characters in strings will put line breaks in the HTML source that PHP sends to your user’s browser
(which can still be useful for creating readable HTML source), but they will usually have no effect on
the way that text looks in a web page.

Summary

PHP code follows a basic set of syntactical rules, mostly borrowed from programming languages
such as C and Perl. The syntactical requirements of PHP are minimal, and in general PHP tries to
display results when it can rather than generating an error.

57

m Introducing PHP

58

PHP has eight types: integer, double, Boolean, NULL, string, array, object, and resource. Five of
these are simple types: Integers are whole numbers, doubles are floating-point numbers, Booleans
are true-or-false values, NULL has just one value (NULL), and strings are sequences of characters.
Arrays are a compound type that holds other PHP values, indexed either by integers or by strings.
Objects are instances of programmer-defined classes, which can contain both member variables and
member functions, and which can inherit functions and data types from other classes. (We address
arrays in Chapter 8 and objects in Chapter 20.) Finally, resources are special references to memory
allocated from external programs, which memory PHP frees automatically when they are no longer
needed (we cover resources in Chapter 25).

Only values are typed in PHP — variables have no inherent type other than the value of their most
recent assignment. PHP automatically converts value types as demanded by the context in which the
value is used. The programmer can also explicitly control types by means of both conversion func-
tions and type casts.

PHP code is whitespace insensitive, and although variable names are case sensitive, basic language
constructs and function names are not. Simple PHP expressions are combined into larger expres-
sions by operators and function calls, and statements are expressions with a terminating semicolon.
Variables are denoted by a leading $ character and are assigned using the = operator. They need

no type declarations and have reasonable default values if used before they are assigned. Variable
scope is global except inside the body of functions, where it is local to the function unless explicitly
declared otherwise.

The simplest way to send output to the user is by using either echo or print, which output the
string arguments. They are particularly useful in combination with doubly quoted strings, which
automatically replace embedded variables with their values.

t’s difficult to write interesting programs if you can’t make the course of
program execution depend on anything. In a weak sense, the behavior
of code that prints variables depends on the variable values, but that
is as exciting as filling out a template. As programmers, we want programs
that react to something (the world, the time of day, user input, or the con-
tents of a database) by doing something different.

This kind of program reaction requires a control structure, which indicates
how different situations should lead to the execution of different code.

In Chapter 4, we informally used the if control structure without really
explaining it; in this chapter, we lay out every kind of control structure
offered by PHP and study their workings in detail.

Experienced C programmers: Of all the features in PHP, control
is probably the most reliably C-like — all the structures you are
used to are here, and they work the same way.

The two broad types of control structures we will talk about are branches
and loops. A branch is a fork in the road for a program’s execution —
depending on some test or other, the program goes either left or right,
possibly following a different path for the rest of the program’s execution.
A'loop is a special kind of branch, where one of the execution paths jumps
back to the beginning of the branch, repeating the test and possibly the
body of the loop.

Before we can make interesting use of control structures, however, we have
to be able to construct interesting tests. We'll start from the very simplest
of tests, working our way up from the constants TRUE and FALSE and then
move on to using these tests in more complicated code.

59

IN THIS CHAPTER

Boolean expressions

Branching

Looping

Terminating execution

Exceptions

Using functions

Function documentation

Defining your own functions

Functions and variable scope

Function scope

m Introducing PHP

60

Any real programming language has some kind of capability for procedural abstraction — a way to
name pieces of code so that you can use them as building blocks in writing other pieces of code.
Some scripting languages lack this capability, and we can tell you from our own sorrowful experi-
ence that complex server-side code can quickly become unmanageable without it.

PHP’s mechanism for this kind of abstraction is the function. There are really two kinds of functions
in PHP — those that have been built into the language by the PHP developers and those defined by
individual PHP programmers.

In this chapter, we also look at how to use the large body of functions already provided in PHP and
then, a bit later, how to define your own functions. Luckily, there is no real difference between using
a built-in function and using your own functions. But first, let’s discuss control.

Boolean Expressions

Every control structure in this chapter has two distinct parts: the test (which determines which part
of the rest of the structure executes), and the dependent code itself (whether separate branches or the
body of a loop). Tests work by evaluating a Boolean expression, an expression with a result treated as
either true or false.

Boolean constants

The simplest kind of expression is a simple value, and the simplest Boolean values are the con-
stants TRUE and FALSE. We can use these constants anywhere we would use a more complicated
Boolean expression, and vice versa. For example, we can embed them in the test part of an if-else
statement:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Or equivalently:

if (FALSE)

print("This will never print
");
else

print("This will always print
");

Logical operators

Logical operators combine other logical (aka Boolean) values to produce new Boolean values. The
standard logical operations (and, or, not, and exclusive-or) are supported by PHP, which has
alternate versions of the first two, as shown in Table 5-1.

TABLE 5-1

Learning PHP Control Structures and Functions

Logical Operators

Operator Behavior

and Is true if and only if both of its arguments are true.

or Is true if either (or both) of its arguments are true.

! Is true if its single argument (to the right) is false and false if its argument is true.

xor Is true if either (but not both) of its arguments are true.

&& Same as and but binds to its arguments more tightly. (See the discussion of precedence later

in the chapter.)

Same as or but binds to its arguments more tightly.

The && and | | operators will be familiar to C programmers. The ! operator is usually called not,
since it negates the argument it operates on.

As an example of using logical operators, consider the following expression:

(($statement_1 && $statement_2) ||
($statement_1 && !$statement_2) |
(I'$statement_1 && $statement_2) |
(!$statement_1 && !$statement_2))

This is a tautology, meaning that it is always true regardless of the values of the statement variables.
There are four possible combinations of truth values for the two variables, each of which is repre-
sented by one of the && expressions. One of these four must be true, and because they are linked by
the | | operator, the entire expression must be true.

Here’s another, slightly trickier tautology using xor:

(($statement_1 and $statement_2 and
$statement_3) xor

((!($statement_1 and $statement_2)) or
(!I($statement_1 and $statement_3)) or
(!($statement_2 and $statement_3))))

In English, this expression says, “Given three statements, one and only one of the following two things
hold — either 1) all three statements are true, or 2) there are two statements that are not both true.”

Precedence of logical operators

Just as with any operators, some logical operators have higher precedence than others, although pre-
cedence can always be overridden by grouping subexpressions using parentheses. The logical opera-
tors listed in declining order of precedence are: !, &&, ||, and, xor, or. Actually, and, xor, and or

61

m Introducing PHP

TABLE 5-2

have much lower precedence than the others, so that the assignment operator (=) binds more tightly
than and but less tightly than &&.

I A complete table of operator precedence and associativity can be found in the online
manual at www.php.net.

Logical operators short-circuit

One very handy feature of Boolean operators is that they associate left to right, and they short-circuit,
meaning that they do not even evaluate their second argument if their truth value is unambiguous
from their first argument. For example, imagine that you wanted to determine a very approximate
ratio of two numbers but also wanted to avoid a possible division-by-zero error. You can first test to
make sure that the denominator is not zero by using the != (not-equal-to) operator:

if ($denom != 0 && $numer / $denom > 2)
print("More than twice as much!");

In the case where $denom is zero, the && operator should return false regardless of whether the sec-
ond expression is true or false. Because of short-circuiting, the second expression is not evaluated,
so an error is avoided. In the case where $denom is not zero, the && operator does not have enough
information to reach a conclusion about its truth value, so the second expression is evaluated.

So far, all we've formally covered are the TRUE and FALSE constants and how to combine them to
make other true-or-false values. Now we’ll move on to operators that actually let you make meaning-
ful Boolean tests.

Comparison operators

Table 5-2 shows the comparison operators, which can be used for either numbers or strings
(although you should see the cautionary sidebar entitled “Comparing Things That Are Not Integers”).

Comparison Operators

Operator Name Behavior

== Equal True if its arguments are equal to each other, false otherwise

I= Not equal False if its arguments are equal to each other, true otherwise

< Less than True if the left-hand argument is less than its right-hand
argument but false otherwise

> Greater than True if the left-hand argument is greater than its right-hand
argument but false otherwise

<= Less than or equal to True if the left-hand argument is less than its right-hand

argument or equal to it but false otherwise

62

Learning PHP Control Structures and Functions

Operator Name Behavior

Greater than or equal to True if the left-hand argument is greater than its right-hand
argument or equal to it but false otherwise

Identical True if its arguments are equal to each other and of the same
type but false otherwise

As an example, here are some variable assignments, followed by a compound test that is always true:

$three = 3;
$four = 4;
$my_pi = 3.14159;
if (($three == $three) and
($four === $four) and
($three != $four) and
($three < $four) and
($three <= $four) and
($four >= $three) and
($three <= $three) and
($my_pi > $three) and
($my_pi <= $four))
print("My faith in mathematics is restored!
");
else
print("Sure you typed that right?
");

| Watch out for a very common mistake: confusing the assignment operator (=) with the

- % comparison operator (==). The statement if ($three = $four) will (probably unex-
pectedly) set the variable $three to be the same as $ four; what’s more, the test will be true if $four
is a true value!

Operator precedence

Although overreliance on precedence rules can be confusing for the person who reads your code
next, it's useful to note that comparison operators have higher precedence than Boolean operators.
This means that a test like the following:

if ($small_num > 2 && $small_num < 5)

doesn’t need any parentheses other than those shown.

String comparison

The comparison operators may be used to compare strings as well as numbers (see the cautionary
sidebar). We would expect the following code to print its associated sentence (with apologies to Billy
Bragg):

if (("Marx" < "Mary") and
("Mary" < "Marzipan"))

63

m Introducing PHP

64

{
print("Between Marx and Marzipan in the ");
print("dictionary, there was Mary.
");

}

The comparisons are case sensitive, and the only reason that this example will print anything is
because our values are case-consistent. Because of the capitalization of Dennis, the following will
not print anything:

if (("deep blue sea" < "Dennis") and
("Dennis" < "devil"))
{
print("Between the deep blue sea and ");
print("the devil, that was me.
");
}

Comparing Things That Are Not Integers

Although comparison operators work with numbers or strings, a couple of gotchas lurk here.

First of all, although it is always safe to do less-than or greater-than comparisons on doubles (or even
between doubles and integers), it can be dangerous to rely on equality comparisons on doubles, especially
if they are the result of a numerical computation. The problem is that a rounding error may make two values
that are theoretically equal differ slightly.

Second, although comparison operators work for strings as well as numbers, PHP’s automatic type conversions
can lead to counterintuitive results when the strings are interpretable as numbers. For example, the code:

SISAC pEngeil S= 0 0 .0/
$string_2 OO AT S
$string_3 "00008-0K";
ISENCE DS NGO SIS E RN grold)

print("$string_2 is less than $string 1
");
I RR09 STRINGES RS SR T 1'gL 29

print("$string_3 is less than $string_2
");
IR EHS BN g RIREEEs SR gA3)

print("$string_1 is less than $string 3
");

gives this output (with comments added):

007 is less than 00008 // numerical comparison
00008-0K is Tess than 007 // string comparison
00008 is less than 00008-0K // string comp. - contradiction!

When it can, PHP will convert string arguments to numbers, and when both sides can be treated that way, the
comparison ends up being numerical, not alphabetic. The PHP designers view this as a feature, not a bug. Our
view is that if you are comparing strings that have any chance of being interpreted as numbers, you're better
off using the strcmp () function.

Learning PHP Control Structures and Functions

The ternary operator

One especially useful construct is the ternary conditional operator, which plays a role somewhere
between a Boolean operator and a true branching construct. Its job is to take three expressions and
use the truth value of the first expression to decide which of the other two expressions to evaluate
and return. The syntax looks like:

testExpression ? yeskExpression : nokExpression

The value of this expression is the result of yes-expression if test-expression is true; other-
wise, it is the same as no-expression.

For example, the following expression assigns to $max_num either $first_numor $second_num,
whichever is larger:

$max_num = $first_num > $second_num ? $first_num : $second_num;

As you will see, this is equivalent to:

if ($first_num > $second_num)
$max_num = $first_num;

else
$max_num = $second_num;

but is somewhat more concise.

Branching

The two main structures for branching are if and switch. I'f is a workhorse and is usually the first
conditional structure anyone learns. Switch is a useful alternative for certain situations where you
want multiple possible branches based on a single value and where a series of i f statements would
be cumbersome.

If-else

The syntax for 1 f is:

if (test)
statement-1

Or with an optional e1se branch:

if (test)
statement-1

else
statement-2

65

m Introducing PHP

66

When an if statement is processed, the test expression is evaluated, and the result is interpreted
as a Boolean value. If test is true, statement-1 is executed. If test is not true, and there is an
else clause, statement-2 is executed. If test is false, and there is no e1se clause, execution sim-
ply proceeds with the next statement after the if construct.

Note that a statement in this syntax can be a single statement that ends with a semicolon, a brace-
enclosed block of statements, or another conditional construct (which itself counts as a single state-
ment). Conditionals can be nested inside each other to arbitrary depth. Also, the Boolean expression
can be a genuine Boolean (TRUE, FALSE, or the result of a Boolean operator or function), or it can be
a value of another type interpreted as a Boolean.

For the full story on how values of non-Boolean types are treated as Booleans, see
Chapter 25. The short version is that the number 0, the string "0", and the empty string,
, are false, and almost every other value is true.

The following example, which prints a statement about the absolute difference between two num-
bers, shows both the nesting of conditionals and the interpretation of the test as a Boolean:

if ($first - $second)
if ($first > $second)
{
$difference = $first - $second;
print("The difference is $difference
");

else
{
$difference = $second - $first;
print("The difference is $difference
");
}
else
print("There is no difference
");

This code relies on the fact that the number 0 is interpreted as a false value — if the difference is
zero, then the test fails, and the no difference message is printed. If there is a difference, a fur-
ther test is performed. (This example is artificial, because a test like $first != $second would
accomplish the same thing comprehensibly.)

Else attachment

At this point, former Pascal programmers may be warily wondering about e1se attachment — that
is, how does an else clause know which 1 f it belongs to? The rules are simple and are the same as
in most languages other than Pascal. Each el se is matched with the nearest unmatched i f that can
be found, while respecting the boundaries of braces. If you want to make sure that an if statement
stays solo and does not get matched to an else, wrap it up in braces like this:

if ($num % 2 == 0) // $num is even?
{
if ($num > 2)

Learning PHP Control Structures and Functions

print("num is not prime
");
}
else
print("num is odd
");

This code will print num is not prime if $num happens to be an even number greater than 2, num
is odd if $num is odd, and nothing if $num happens to be 2. If we had omitted the curly braces, the
else would attach to the inner 1 f, and so the code would buggily print num is odd if $num were
equal to 2 and would print nothing if $num were actually odd.

In this chapter’s examples, we often use the modulus operator (%), which is explained in
Chapter 9. For the purposes of these examples, all you need to know is that if $x % $y is
zero, $x is evenly divisible by $y.

Elseif

It’s very common to want to do a cascading sequence of tests, as in the following nested i f statements:

if ($day == 5)
print("Five golden rings
");
else
if ($day == 4)
print("Four calling birds
");

else
if ($day == 3)
print("Three French hens
");
else

if ($day == 2)
print("Two turtledoves
");
else
if ($day == 1)
print("A partridge in a pear tree
");

We have indented this code to show the real syntactic structure of inclusions — although
this is always a good idea, you will often see code that does not bother with this and
where each el se line starts in the first column.

This pattern is common enough that there is a special elseif construct to handle it. We can rewrite
the preceding example as:

if ($day == 5)
print("Five golden rings
");
elseif ($day == 4)
print("Four calling birds
");
elseif ($day == 3)
print("Three French hens
");
elseif ($day == 2)
print("Two turtledoves
");
elseif ($day == 1)
print("A partridge in a pear tree
");

67

m Introducing PHP

68

Branching and HTML Mode

s you may have learned from earlier chapters, you should feel free to use the PHP tags to switch back and

forth between HTML mode and PHP mode, whenever it seems convenient. If you need to include a large
chunk of HTML in your page that has no dynamic code or interpolated variables, it can be simpler and more
efficient to escape back into HTML mode and include it literally than to send it using print or echo.

What may not be as obvious is that this strategy works even inside conditional structures. That is, you can
use PHP to decide what HTML to send and then “send” that HTML by temporarily escaping back to HTML
mode.

For example, the following cumbersome code uses print statements to construct a complete HTML page
based on the supposed gender of the viewer. (We're assuming a nonexistent Boolean function called female()
that tests for this.)

<HTML><HEAD>
<?php
ISES0caE®))
{
PIFiENEACEGRINEEE 2T SV C AU Ol YASSSREE X /A T TR BEX B R2ZIDE:
print("</HEAD><BODY>");
print("This site has been specially constructed ");
print("for cats only.
 No dogs allowed here!l");

PR R BT EEd olgEoniRyas 11t e SR TR EEPKB R>:)5
print("</HEAD><BODY>");

print("This site has been specially constructed ");
print("for dogs only.
 No cats allowed herel");

{9’

</BODY></HTML>

Instead of all these print statements, we can duck back into HTML mode within each of the two branches:

<HTML><HEAD>
<?php
[CcBEN)

it
7
KTIMLE>The cat-only site</TITLE>
</HEAD><BOQODY>
This site has been specially constructed
for cats only.
 No dogs allowed here!
<?php

Learning PHP Control Structures and Functions

else

{
?>
KTITLE>The dog-only site</TITLE>

</HEAD><BODY>
This site has been specially constructed
for dogs only.
 No cats allowed here!
<?php

1
>
</BODY></HTML>

This version is somewhat more difficult to read, but the only difference is that it replaces each set of print
statements with a block of literal HTML that starts with a closing PHP tag (?>) and ends with a starting PHP
tag (<?php).

In this book’s examples, we mostly avoid this kind of conditional inclusion, simply because we feel that it
may be harder for the novice PHP programmer to decipher. But that shouldn’t stop you — literal inclusion
has advantages, including fast execution. (In HTML mode, all the PHP engine must do is pass on characters
and watch for the next PHP start tag, which is inevitably faster than parsing and executing print statements,
especially if they include doubly quoted strings.)

A third alternative, when large blocks of HTML are conditionally included, is the heredoc, alluded to in Chapter
4 and explained fully in Chapter 7. The heredoc will allow you to include large blocks of HTML code inside a
chunk of PHP without several consecutive print statements.

The if, elseif construct allows for a sequence of tests that executes only the first branch that has a
successful test. In theory, this is syntactically different from the previous example (we have a single
construct with five branches rather than a nesting of five two-branch constructs), but the behavior is
identical. Use whichever syntax you find more appealing.

Switch

For a specific kind of multiway branching, the switch construct can be useful. Rather than branch
on arbitrary logical expressions, switch takes different paths according to the value of a single
expression. The syntax is as follows, with the optional parts enclosed in square brackets ([]):

switch(expression)
{
case value-1:
statement-1;
statement-2;
[break;]
case value-2:

69

Introducing PHP

Statement-3;
Statement-4;

[break;]
[default:
default-statement;]

}

The expression can be a variable or any other kind of expression, as long as it evaluates to a simple
value (that is, an integer, a double, or a string). The construct executes by evaluating the expression
and then testing the result for equality against each case value. As soon as a matching value is found,
subsequent statements are executed in sequence until the special statement (break;) or until the
end of the switch construct. (As we’ll see in the “Looping” section of this chapter, break can also
be used to break out of looping constructs.) A special default tag can be used at the end, which
will match the expression if no other case has matched it so far.

For example, we can rewrite the if-else example as follows:

switch($day)
{
case b5:
print("Five golden rings
");
break;
case 4:
print("Four calling birds
");
break;
case 3:
print("Three French hens
");
break;
case 2:
print("Two turtledoves
");
break;
default:
print("A partridge in a pear tree
");
}

This will print a single appropriate line for days 2-5; for any day other than those, it will print A
partridge in a pear tree. Although switch will accept only a single argument, there’s no rea-
son why that argument can’t be the value of expressions evaluated previously in your code.

The single most confusing aspect of switch is that all cases after a matching case will

- execute, unless there are break statements to stop the execution. In the “partridge”
example, the break statements ensure that we see only one line from the song at a time. If we remove
the break statements, we will see a sequence of lines counting down to the final line, just as in the
song.

70

Learning PHP Control Structures and Functions

Looping

Congratulations! You just passed the boundary from scripting into real programming. The branch-
ing structures we have looked at so far are useful, but there are limits to what can be computed with
them alone. On the other hand, it’s well established in theoretical computer science that any lan-
guage with tests plus unbounded looping can do pretty much anything that any other language can
do. You may not actually want to write a C compiler in PHP, for example, but it’s nice to know that
no inherent language limits are going to stop you.

Bounded loops versus unbounded loops

A bounded loop executes a fixed number of times — you can tell by looking at the code how many
times the loop will iterate, and the language guarantees that it won’t loop more times than that. An
unbounded loop repeats until some condition becomes true (or false), and that condition is dependent
on the action of the code within the loop. Bounded loops are predictable, whereas unbounded loops
can be as tricky as you like.

Unlike some languages, PHP doesn't actually have any constructs specifically for bounded loops —
while, do-while, and for are all unbounded constructs — but as you will see in this section, an
unbounded loop can do anything a bounded loop can do.

“REF In addition to the looping constructs in this chapter, PHP provides functions for iterating
S over the contents of arrays, which are covered in Chapter 8.

While

The simplest PHP looping construct is whi1e, which has the following syntax:

while (condition)
statement

The while loop evaluates the condition expression as a Boolean — if it is true, it executes statement
and then starts again by evaluating condition. If the condition is false, the while loop terminates. Of
course, just as with 1f, statement may be a single statement or it may be a brace-enclosed block. The
body of a while loop may not execute even once, as in:

while (FALSE)
print("This will never print.
");

Or it may execute forever, as in this code snippet:

while (TRUE)
print("Al1 work and no play makes
Jack a dull boy.
");

71

m Introducing PHP

72

Or it may execute a predictable number of times, as in:

$count = 1;
while ($count <= 10)
{
print("count is $count
");
$count = $count + 1;
}

which will print exactly 10 lines. (For more interesting examples, see the “Looping examples” sec-
tion, later in this chapter.)

Do-while

The do-while construct is similar to whiTe, except that the test happens at the end of the loop.
The syntax is:

do statement
while (expression);

The statement is executed once, and then the expression is evaluated. If the expression is true, the
statement is repeated until the expression becomes false. The only practical difference between
while and do-while is that the latter will always execute its statement at least once. For example:

$count = 45;
do
{
print("count is $count
");
$count = $count + 1;
}
while ($count <= 10);

prints the single line:

count is 45

For

The most complicated looping construct is for, which has the following syntax:

for (initial-expression;
termination-check;
loop-end-expression)
statement

In executing a for statement, first the initial-expression is evaluated just once, usually to initialize
variables. Then termination-check is evaluated — if it is false, the for statement concludes, and if it is

Learning PHP Control Structures and Functions

true, the statement executes. Finally, the loop-end-expression is executed and the cycle begins again
with termination-check. As always, by statement we mean a single (semicolon-terminated) statement, a
brace-enclosed block, or a conditional construct.

1f we rewrote the preceding for loop as a while loop, it would look like this:

initial-expression;
while (termination-check)
{
statement
loop-end-expression;
}

Actually, although the typical use of for has exactly one initial-expression, one termination-check,
and one loop-end-expression, it is legal to omit any of them. The termination-check is taken to be
always true if omitted, so:

for (;3)
statement

is equivalent to:

while (TRUE)
statement

It is also legal to include more than one of each kind of for clause, separated by commas. The
termination-check will be considered to be true if any of its subclauses is true; it is like an 'or ' test.
For example, the following statement:

for ($x =1, $y =1, $z = 1; //initial expressions
$y < 10, $z < 10; // termination checks
$x = $x + 1, $y = $y + 2, // Toop-end expressions
$z = $z + 3)

print("$x, $y, $z
");

would give the browser output:

1, 1,1
2, 3, 4
3, 5,7

Although the for syntax is the most complex of the looping constructs, it is often used for simple
bounded loops, using the following idiom:

for ($count = 0; $count < $1imit; $count = $count + 1)
statement

73

m Introducing PHP

Looping examples
Now let’s look at some examples.
A bounded for loop

Listing 5-1 shows a typical use of bounded for loops. The page produced by Listing 5-1 is shown in
Figure 5-1.

LISTING 5-1

A division table

<?php
$start_num = 1;
$end_num = 10;
7>
<HTML>
<HEAD>
<TITLE>A division table</TITLE>
</HEAD>
<BODY>
<H2>A division table</H2>
<TABLE BORDER=1>
<?php
print("<TR>");
print ("<TH> </TH>");
for ($count_1 = $start_num;
$count_1 <= $end_num;
$count_1++)
print("<TH>$count_1</TH>");
print("</TR>");

for ($count_1 = $start_num;
$count_1 <= $end_num;
$count_1++)
{
print ("<TR><TH>$count_1</TH>");
for ($count_2 = $start_num;
$count_2 <= $end_num;
$count_2++)
{
$result = $count_1 / $count_2;
printf("<TD>%.3f</TD>",
$result); // see Chapter 7
}
print("</TR>\n");
}

74

Learning PHP Control Structures and Functions

7>
</TABLE>
</B0ODY>
</HTML>

FIGURE 5-1

A division table

#L A division table - Netscape

File Edit View Go Communicater Help

I 2 ¢ 3 & 2 @ S & @
i Back Forward Reload Haome Search Metscape Frint Security Stop

" ‘t'Bokaarks V.78 Lucaliun.|hltp./!IDcthUsl/divisiDn php j @'Whal‘s Related

i &InslantMessage Catagaries Maps Phata Finder Secure Web Shop Home

A division table

|1 [2]3[4]s |67]8][09 [w
'1[1.000 [0.500(0.333[0.250 0.200 [0.167/0.143[0.1250.1110.100
'2[2.000 [1.000[0.667[0.5000.400[0.3330.286[0.250 0.222 [0.200
'3 [3.000 [1.500(1.000(0.7500.600 [0.500(0.429(0.3750.333 [0.300
"4 [4.000 [2.000]1.333[1.000 0.800 [0.667(0.571(0.500/0.444 0.400
'5[5.000 [2.500[1.667[1.250 1.000 [0.833]0.714(0.6250.5560.500
16 [6.000 [3.000[2.000[1.500/1.200[1.0000.857[0.7500.667 [0.600
17 [7.000 [3.500(2.333[1.750/1.4001.167[1.000(0.875 0.778 [0.700
'8 8.000 [4.0002.667[2.000 1.600 [1.333]1.143[1.000/0.889 0.800
19 [9.000 [4.500(3.000[2.250 1.800 [1.500[1.2861.125/1.0000.900
10/10.000[5.000(3.333[2.500 2.000 1.667[1.429[1.250 1.111 [1.000

Elﬁ| |Document: Done

The main body of this code simply has one for loop nested inside another, with each loop executing
10 times, resulting in a 10 x 10 table. Each iteration of the outer loop prints a row, whereas each inner
iteration prints a cell. The only novel feature is the way we chose to print the numbers — we used
printf (covered in Chapter 7), which allows us to control the number of decimal places printed.

The $variable_name++ feature used above is called an increment. It’s a fairly standard
shorthand for $variable_name + 1.

An unbounded while loop

Now let’s look at a loop not so obviously bounded. The sole purpose of the code in Listing 5-2 is to
approximate the square root of 81 (using Newton’s method). The approximation starts with a guess
of 1 and then “zeros in” on the actual square root of 9 by improving the guesses. A trace of this
approximation is shown in Figure 5-2.

75

m Introducing PHP

LISTING 5-2

76

Approximating a square root

<HTML>

<HEAD>

KTITLE>Approximating a square root</TITLE>
</HEAD>

<BODY>

<H3>Approximating a square root</H3>

<?php
$target 81
$guess 1.0
$precision =

s
- s

0.0000001;

$guess_squared $guess * $guess;
while (($guess_squared - $target > $precision) or
($guess_squared - $target < - $precision))
{
print("Current guess: $guess is the square
root of $target
");
$guess ($guess + ($target / $guess)) / 2;
$guess_squared = $guess * $guess;
}
print("$guess squared
?>
</BODY>
</HTML>

$guess_squared
");

Now, although it nicely illustrates a potentially unbounded loop, this approximation example is very
artificial — first, because PHP already has a perfectly good square-root function (sqrt) and second,
because the number 81 is hardcoded into the page. We can’t use this page to find the square root of

any other number.

Break and continue

The standard way to get out of a looping structure is for the main test condition to become false. The
special commands break and continue offer an optional side exit from all the looping constructs,
including while, do-while, and for:

B The break command exits the innermost loop construct that contains it.

B The continue command skips to the end of the current iteration of the innermost loop
that contains it.

Learning PHP Control Structures and Functions

FIGURE 5-2

Approximating a square root

¥7 Approximating a square root - Netscape
File Edit View Go Communicator \ Help

{Qﬁﬁa@ﬁﬁﬁ%

Back Forward Aelnad Horne: Search Metscape Frint Security Stop
ﬁ" Bookmarks J‘ Locat\om:lhtlp flocahost/sq root.php d ﬁl' ‘What's Related
i &InstanlMessage talagulias Maps Photo Finder Secure Web Shop Home

Approximating a square root

Current guess: 1 is the square root of 81

Current guess: 41 is the square root of 81

Current gness: 21.487804878049 is the square root of 81
Current guess: 12.628692450375 is the square root of 81
Current guess: 9.521329066772 is the square root of 81
Current guess: 9.0142723769946 is the square root of 81
Current guess: 9.0000112987902 is the square root of 81
9.0000000000071 squared = 81.000000000128

| == | |Document: Done

For example, the following code:

for ($x = 1; $x < 10; $x++)
{
// if $x is odd, break out
if ($x % 2 !'=0)
break;
print("$x ");
t

prints nothing, because 1 is odd, which terminates the for loop immediately. On the other hand,
the code:

for ($x = 1; $x < 10; $x++)
{
// if $x is odd, skip this loop
if ($x % 2 1=0)
continue;
print("$x ");
}

77

m Introducing PHP

78

prints:
2468
because the effect of the continue statement is to skip the printing of any odd numbers.

Using the break command, the programmer can choose to dispense with the main termination test
altogether. Consider the following code, which prints a list of prime numbers (that is, numbers not
divisible by something other than 1 or the number itself):

$1imit = 500;
$to_test = 2;
while(TRUE)

{

$testdiv = 2;
if ($to_test > $1imit)
break;

while (TRUE)
{
if ($testdiv > sqrt($to_test))
{
print "$to_test ";
break;
}
// test if $to_test is divisible by $testdiv
if ($to_test % $testdiv == 0)
break;
$testdiv = $testdiv + 1;
1
$to_test = $to_test + 1;
}

In the preceding code, we have two while loops — the outer loop works through all the numbers
between 1 and 500, and the inner loop actually does the testing with each possible divisor. If the
inner loop finds a divisor, the number is not prime, so it breaks out without printing anything. If, on
the other hand, the testing gets as high as the square root of the number, we can safely assume that
the number must be prime, and the inner loop is broken without printing. Finally, the outer loop is
broken when we have reached the limit of numbers to test. The result in this case is a list of primes
less than 500:

2 357 111317 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257
263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499

Notice that it is crucial to this code that break interrupt the inner while loop only.

Learning PHP Control Structures and Functions

C R
.,.‘_5.6

SSIR! E There is another iteration construct, called foreach, which is used only for iterating
ST over arrays. We cover it in Chapter 8.

=

A note on infinite loops

If you've ever programmed in another language, you've probably had the experience of acciden-

tally creating an infinite loop (a looping construct whose exit test never becomes true and so never
returns). The first thing to do when you realize this has happened is to interrupt the program, which
will otherwise continue “forever” and use up a lot of CPU time. But what does it mean to interrupt a
PHP script? Is it sufficient to click the Stop button on your browser?

As it turns out, the answer is dependent on some PHP configuration settings — you can set the PHP
engine to ignore interruptions from the browser (like the result of clicking Stop) and also to impose
a time limit on script execution (so that “forever” will only be a short time). The default configura-
tion for PHP is to ignore interruptions, but with a script time limit of 30 seconds — the time limita-
tion means that you can afford to forget about infinite loops that you may have started.

For more on the configuration of PHP, see Chapter 29.

Alternate Control Syntaxes

PHP offers another way to start and end the bodies of the i f, switch, for, and while constructs.
It amounts to replacing the initial brace of the enclosed block with a colon and the closing brace
with a special ending statement for that construct (endif, endswitch, endfor, or endwhile). For
example, the 1f syntax becomes:

if (expression):
statementl
statement?2

endif;

if (expression):
statementl
statement?

elseif (expressionZ):
statement3

else:
statement4

endif;

79

m Introducing PHP

80

Note that the else and elseif bodies also begin with colons. The corresponding while syntax is:

while (expression):
statement
endwhile;

Which syntax you use is a matter of taste. The nonstandard syntax in PHP is largely used for histori-
cal reasons and for the comfort of people who are familiar with it from the early versions of PHP. We
will consistently use the standard syntax in the rest of this book.

Terminating Execution

Sometimes you just have to give up, and PHP offers a construct that helps you do just that. The
exit() construct takes either a string or a number as argument, prints out the argument, and

then terminates execution of the script. Everything that PHP produces up to the point of invoking
exit() is sent to the client browser as usual, and nothing in your script after that point will even be
parsed — execution of the script stops immediately. If the argument given to exit is a number rather
than a string, the number will be the return value for the script’s execution. Because exit is a con-
struct, not a function, it’s also legal to give no argument and omit the parentheses.

The die() construct is an alias for exit () and so behaves exactly the same way. (We'll usually use the
die() version because we find the name more evocative.) So what's the point of exit () and die()?
One possible use is to cut off production of a web page when your script has determined that there is no
more interesting information to send, without bothering to wrap up the different branches in a condi-
tional construct. This usage can make long scripts somewhat difficult to read and debug, however.

A better use for die () is to make your crashes informative. It's good to get into the habit of test-
ing for unexpected conditions that would crash your script if they were true, and throw ina die()
statement with an informative message. If you're correct in your expectations, the die () will never
be invoked; if you're wrong, you will have an error message of your own rather than a possibly
obscure PHP error. For example, consider the following pseudocode, which assumes that we have
functions to make a database connection and that we then use that database connection:

$connection = make_database_connection();
if (!$connection)

die("No database connection!");
use_database_connection($connection);

This example assumes that our imaginary function make_database_connection(), like many
PHP functions, returns a useful value if it succeeds, and a false value if it fails. An even more com-
pact version of the preceding code takes advantage of the fact that or has lower precedence than the
= assignment operator.

$connection = make_database_connection()
or die("No database connection!");
use_database_connection($connection);

Learning PHP Control Structures and Functions

This works because the or operator short-circuits, and therefore the die () construct will only be
evaluated if the expression $connection = make_database_connection() has a false value.
Because the value of an assignment expression is the value assigned, this code ends up being equiva-
lent to the earlier version. (Note that this would not work the same way if we used | | instead of

or, because | | has higher precedence than assignment, and so $connection would end up being
assigned to the true-or-false result of the | | expression.)

Before PHP5, the control structures we’ve presented so far were really the only alterna-
tives; control would flow from the first statement in a file to the last (possibly bounced
around by function calls), unless prematurely terminated with die (). With exception handling, PHP5
introduces an alternate way to deal with problematic conditions, and one that is much more flexible
than die (). We treat exceptions briefly later in this chapter, and more thoroughly in Chapter 30.

In Table 5-3, we summarize all the control structures you've seen thus far.

TABLE 5-3

PHP Control Structures

Name Syntax Behavior
If if (test)statement-1 Evaluate test and if it is true, execute
(or if-else) -or- statement-1. If test is false and there is an
if (test) else clause, execute statement-2. The
statement-1 elseif construct is a syntactic shortcut for
else else clauses, where the included statement is
statement-2 itself an if construct.
-or- Statements may be single statements
if (test) terminated with a semicolon or brace-
statement-1 enclosed blocks.

elseif (test?2)
statement-2

else
statement-3

Ternary operator expression-1 7 Evaluate expression-1 and interpret it as a
expression-2 : Boolean. If it is true, evaluate expression-2 and
expression-3 return it as the value of the entire expression.

Otherwise, evaluate and return expression-3.

continued

81

BTN oteoducing pree

PHP Control Structures

Name Syntax Behavior
If if (test)statement-1 Evaluate test and if it is true, execute
(or if-else) -or- statement-1. If test is false and there is an
if (test) else clause, execute statement-2. The
statement-1 elseif construct is a syntactic shortcut for
else else clauses, where the included statement is
statement-2 itself an if construct.
-or- Statements may be single statements
if (test) terminated with a semicolon or brace-
statement-1 enclosed blocks.

elseif (test?)
statement-2

else
statement-3

Ternary operator expression-1 7 Evaluate expression-1 and interpret it as a
expression-2 : Boolean. If it is true, evaluate expression-2 and
expression-3 return it as the value of the entire expression.

Otherwise, evaluate and return expression-3.

Switch switch(expression) Evaluate expression, and compare its value
{ to the value in each case clause. When
case value-1: a matching case is found, begin executing
statement-1 statements in sequence (including those from
statement-2 later cases), until the end of the switch

statement or until a break statement is
encountered. The optional default case
will execute if no other case has matched the
expression.

[break;]
case value-2:

statement-3

statement-4

Ebreak;]
[default:

default-statement]
}

While while (condition) Evaluate condition and interpret it as Boolean.
statement If condition is false, the while construct

terminates. If it is true, execute statement, and
keep executing it until condition becomes
false. Terminate the whi 1e loop if the special
break command is encountered, and skip
the rest of the current iteration if continue is
encountered.

82

Learning PHP Control Structures and Functions

Name Syntax Behavior
Do-while do statement Perform statement once unconditionally,
while (condition); then keep repeating statement until condition

becomes false. (The break and continue
commands are handled as in while.)

For for (initial-expression; Evaluate initial-expression once
termination-check; unconditionally. Then if termination-check
loop-end- is true, evaluate statement, and then loop-

expression) end-expression, and repeat that loop until
statement termination-check becomes false. Clauses

may be omitted, or multiple clauses of the
same kind can be separated with commas — a
missing termination-check is treated as
true. (The break and continue commands
are handled as in while.)

Using Functions

The basic syntax for using (or calling) a function is:

function_name(expression_1, expression_2, ..., expression_n)

This includes the name of the function followed by a parenthesized and comma-separated list of
input expressions (which are called the arguments to the function). Functions can be called with zero
or more arguments, depending on their definitions.

When PHP encounters a function call, it first evaluates each argument expression and then uses
these values as inputs to the function. After the function executes, the returned value (if any) is the
result of the entire function expression.

All the following are valid calls to built-in PHP functions:

sqrt(9); // square root function, evaluates to 3

rand(10, 10 + 10); // random number between 10 and 20
strien("This has 22 characters"); // returns the number 22
pi(); // returns the approximate value of pi

These functions are called with 1, 2, 1, and 0 arguments, respectively.

Return values versus side effects

Every function call is a PHP expression, and (just as with other expressions) there are only two rea-
sons why you might want to include one in your code: for the return value or for the side effects.

83

m Introducing PHP

84

The return value of a function is the value of the function expression itself. You can do exactly the
same things with this value as with the results of evaluating any other expression. For example, you
can assign it to a variable, as in:

$my_pi = pi();
Or you can embed it in more complicated expressions, as in:
$approx = sqrt($approx) * sqrt($approx)

Functions are also used for a wide variety of side effects, including writing to files, manipulating
databases, and printing things to the browser window. It’s okay to make use of both return values
and side effects at the same time — for example, it is very common to have a side-effecting function
return a value that indicates whether or not the function succeeded.

The result of a function may be of any type, and it is common to use the array type as a way for
functions to return multiple values.

Function Documentation

The architecture of PHP has been cleverly designed to make it easy for other developers to extend.
The basic PHP language itself is very clean and flexible, but there is not a lot there — most of PHP’s
power resides in the large number of built-in functions. This means that developers can contribute
simply by adding new built-in functions, which is nice especially because it does not change any-
thing that PHP users may be relying on.

Although this book covers many of these built-in functions, explaining some of them in greater
detail than the online manual can, the manual at www.php.net is the authoritative source for func-
tion information. In this book, we get to choose our topics to some extent, whereas the PHP docu-
mentation group has the awesome responsibility of covering every aspect of PHP in the manual.
Also, although we hope to keep updating this book in future editions, the manual will have the
freshest information on new additions to the ever-growing PHP functionality. It's worth looking at
some of the different resources that the PHP site and manual offer.

I Although the following information is correct at this writing, some details may become
dated or inapplicable if the online manual is reorganized.

To find the manual, head to www.php.net. A handy search bar at the top offers quick and easy
access to any individual part of the online documentation. Alternatively, find the Documentation
item at the top of the page. The Documentation page that this tab leads to has links to manual infor-
mation in a wide variety of formats and languages.

The largest section of the manual is the function reference, where each built-in function gets its own
page of documentation. Typically, each group of functions has a page of general explanation, leading
to pages for individual functions. Each function page starts off with the name of the function and a
one-line description. This is followed by a C-style header declaration of the function (explained in

Learning PHP Control Structures and Functions

the next section), followed by a slightly longer description and possibly an example or two, and then
(in the annotated manual) clarifications and gotcha reports from users.

Headers in documentation

For those unfamiliar with C function headers, the very beginning of a function documentation page
might be confusing. The format is:

return-type function-name(typel argl, type? arg?, . . .);

This specifies the type of value the function is expected to return, the name of the function, and the
number and expected types of its arguments.

Here is a typical header description:
string substr(string string, int startl[, int lengthl);

This says that the function substr () will return a string and expects to be given a string and two
integers as its arguments. Actually, the square brackets around Tength indicate that this argument
is optional — so substr () should be called either with a string and an int, or a string and two ints.

Unlike in C, the argument types in these documentary headers are not absolute requirements. If
you call substr() with a number as its first argument, you will not get an error. Instead, PHP will
convert the first argument to a string as it begins to execute the function. However, the argument
types do document the intent of the function’s author, and it is a good idea either to use the function
as documented or to understand the type conversion issues well enough that you are sure the result
will be what you expect.

In general, the type names used in function documentation will be those of the basic types or of
their aliases: integer (or int), double (or f1oat, real), Boolean, string, array, object, resource, and
NULL. In addition, you may see the types void and mixed. The void return type means that the
function does not return a value at all, whereas the mixed argument type means that the argument
might be of any type.

Finding function documentation
What's the best way to find information about a function in the manual? That is likely to depend on
what kind of curiosity you have. The most common questions about functions are:

m [want to use function X. Now, how does X work again?

m ['d really like to do task Y. Is there a function that handles that for me?

For the first type of curiosity, the full version of the online manual offers an automatic lookup by
function name. You can simply type http://php.net/functionName and the functionName
will be searched for automatically. Alternately, the “Search For” box in the upper-right corner of
the manual pages defaults to a mode where it searches for specific function names and displays the

85

m Introducing PHP

86

corresponding function page if found. (You can also make other choices, including searching the
mailing list or the entire online documentation — the latter is a good choice when you don't know
the name of the function you want, but can guess at words that appear on its manual page.)

For the second type of curiosity, your best bet is probably to use the hierarchical organization of the
function reference. For example, the substr function shown in the “Headers in Documentation”
section is found in the “String Functions” section. You can browse the chapter list of the function
reference for the best fit for the task you want to do.

Defining Your Own Functions

User-defined functions are not a requirement in PHP. You can produce interesting and useful web
sites simply with the basic language constructs and the large body of built-in functions. If you find
that your code files are getting longer, harder to understand, and more difficult to manage, however,
it may be an indication that you should start wrapping some of your code up into functions.

What is a function?

A function is a way of wrapping up a chunk of code and giving that chunk a name, so that you can
use that chunk later in just one line of code. Functions are most useful when you will be using the
code in more than one place, but they can be helpful even in one-use situations, because they can
make your code much more readable.

Function definition syntax

Function definitions have the following form:

function function-name ($argument-1, $argument-2, ..)
{

Statement-1;
Statement-2;

}
That is, function definitions have four parts:

The special word function
The name that you want to give your function

The function’s parameter list — dollar-sign variables separated by commas

The function body — a brace-enclosed set of statements

Just as with variable names, the name of the function must be made up of letters, numbers, and
underscores, and it must not start with a number. Unlike variable names, function names are

Learning PHP Control Structures and Functions

converted to lowercase before they are stored internally by PHP, so a function is the same regardless
of capitalization.

The short version of what happens when a user-defined function is called is:

1. PHP looks up the function by its name (you will get an error if the function has not yet
been defined).

2. PHP substitutes the values of the calling arguments (or the actual parameters) into the vari-
ables in the definition’s parameter list (or the formal parameters).

3. The statements in the body of the function are executed. If any of the executed statements
are return statements, the function stops and returns the given value. Otherwise, the
function completes after the last statement is executed, without returning a value.

The alert and experienced programmer will have noticed that the preceding description
: implies call-by-value, rather than call-by-reference. In Chapter 26, we explain the differ-
ence and show how to get call-by-reference behavior.

Function definition example

As an example, imagine that we have the following code that helps decide which size of bottled soft
drink to buy. (This is sometime next year, when supermarket shoppers routinely use their wearable
wireless web browsers to get to our handy price-comparison site.)

$liters_1 = 1.0;
$price_1 = 1.59;
$liters 2 = 1.5;
$price 2 = 2.09;

$per_liter_1 = $price_1 / $liters_1;
$per_liter_2 = $price_2 / $liters_2;
if ($per_literl < $per_liter2)

print("The first deal is better!
");
else

print("The second deal is better!
");

Because this kind of comparison happens in our web site code all the time, we would like to make
part of this a reusable function. One way to do this would be the following rewrite:

function better_deal ($amount_1, $price_1,
$amount_2, $price_2)
{
$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
return($per_amount_1 < $per_amount_2);
}

$1iters_1 = 1.0;

87

m Introducing PHP

88

$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

if (better_deal($liters_1, $price_1,
$liters_2, $price_2))
print("The first deal is better!
");
else
print("The second deal is better!
");

Our better_deal function abstracts out the three lines in the previous code that did the arithmetic
and comparison. It takes four numbers as arguments and returns the value of a Boolean expression.
As with any Boolean value, we can embed it in the test portion of an i f statement. Although this
function is longer than the original code, there are two benefits to this rewrite: We can use the func-
tion in multiple places (saving lines overall), and if we decide to change the calculation, we have to
make the change in only one place.

Alternatively, if the only way we ever use these price comparisons is to print which deal is preferred,
we can include the printing in the function, like this:

function print_better_deal ($amount_1, $price_1,
$amount_2, $price_2)

{

$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
if ($per_amount_1 < $per_amount_2)
print("The first deal is better!
");
else
print("The second deal is better!
");

}

$1iters_1 = 1.0;
$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

print_better_deal($1iters_1, $price_1,
$liters_2, $price_2);

Our first function used the return statement to send back a Boolean result, which was used in

an if test. The second function has no return statement, because it is used for the side effect of
printing text to the user’s browser. When the last statement of this function is executed, PHP simply
moves on to executing the next statement after a function call.

Formal parameters versus actual parameters

In the preceding examples, the arguments we passed to our functions happened to be variables, but
this is not a requirement. The actual parameters (that is, the arguments in the function call) may

Learning PHP Control Structures and Functions

be any expression that evaluates to a value. In our examples, we could have passed numbers to our
function calls rather than variables, as in:

print_better_deal(1.0, 1.59, 1.5, 2.09);

Also, notice that in the examples we had a couple of cases where the actual parameter variable had
the same name as the formal parameter (for example, $price_1), and we also had cases where the
actual and formal names were different. ($17ters_1 is not the same as $amount_1.) As we will see
in the next section, this name agreement doesn’t matter either way — the names of a function’s for-
mal parameters are completely independent of the world outside the function, including the function
call itself.

Argument number mismatches

What happens if you call a function with fewer arguments than appear in the definition, or with
more? As you might have come to expect by now, PHP handles this without anything crashing, but
it may print a warning depending on your settings for error reporting.

Too few arguments

If you supply fewer actual parameters than formal parameters, PHP will treat the unfilled formal
parameters as if they were unbound variables. However, under the usual settings for error reporting
in PHP6, you will also see a warning printed to the browser.

The default error-reporting setting in PHP6 reports on every kind of error except runtime notices,
which are the least serious condition that is detected. The reason you see warnings about too few
arguments to a function is that this is treated as a runtime-warning situation (the next most serious
category). If you really need function calls that sometimes provide too few arguments and seeing
warnings is unacceptable, you have two options for suppressing the warnings:

B You can temporarily change the value of error reporting in your script, with a statement
like error_reporting(E_ALL ~ E_NOTICE ~ E_WARNING;. This will turn off both
runtime notices and runtime warnings from the point where it appears in your script up
to the next error_reporting() statement (if any). (Note that this is dangerous, as lots of
other problems might produce warnings besides the one you're interested in.)

B You can suppress errors for any single expression by using the error-control operator @,
which you can put in front of any expression to suppress errors from that expression only.
For example, if the function call my_function() is producing a warning, @my_function()
will not. Note that this is dangerous as well because all types of errors except for parse errors
will be suppressed.

We don't advise using either of these workarounds, but we provide them because we are such non-
judgmental people by nature. PHP actually provides ways to write functions that expect variable
numbers of arguments (see the “Variable Numbers of Arguments” section in Chapter 26), and using
them is a much better idea than shooting the messenger.

89

Introducing PHP

90

Rather than decreasing PHP’s reportage of errors, we advise increasing it to the

. maximum level possible when you are developing new code. You can do this glob-
ally by changing the php.ini file (see Chapter 29) or simply by including the statement error_
reporting(E_ALL) ; at the top of your scripts. Among other things, this increase in reportage will
mean that you will be warned about variables you have forgotten to assign, which is one of the most
frequent causes of time-wasting bugs.

Too many arguments

If you hand too many arguments to a function, the excess arguments will simply be ignored, even
when error reporting is set to E_ALL. As you will see in Chapter 26, this tolerance turns out to be
helpful in defining functions that can take a variable number of arguments.

Functions and Variable Scope

As we said in Chapter 4, outside of functions, the rules about variable scope are simple: Assign a
variable anywhere in the execution of a PHP code file, and the value will be there for you later in
that file’s execution. The rules become somewhat more complicated in the bodies of function defini-
tions, but not much.

The basic principle governing variables in function bodies is: Each function is its own little world.
That is, barring some special declarations, the meaning of a variable name inside a function has
nothing to do with the meaning of that name elsewhere. (This is a feature, not a bug — you want
functions to be reusable in different contexts, and so having the behavior be independent of the con-
text is a good thing. If not for this kind of scoping, you would waste a lot of time chasing down bugs
caused by using the same variable name in different parts of your code.)

As of PHP 4.1, there is a small set of global variables that are automatically visible from

== within function definitions, in contradiction to the previous paragraph and the following
one. These are the superglobal arrays ($_POST, $_GET, $_SESSION, and so on), which contain keys
and values corresponding to variable bindings from different sources. For more on these variables and
their uses, see Chapter 6.

The only variable values that a function has access to are the formal parameter variables (which have
the values copied from the actual parameters), plus any variables assigned inside the function. This
means that you can use local variables inside a function without worrying about their effects on the
outside world. For example, consider this function and its subsequent use:

function SayMyABCs ()
{
$count = 0;
while ($count < 10)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}

Learning PHP Control Structures and Functions

print("
Now I know $count letters
");
}
$count = 0;
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");

The intent of SayMyABCs () is to print a sequence of letters. (The functions chr() and ord() trans-
late between letters and their numeric ASCII codes — we use them here just as a trick to generate
letters in sequence.) The output of this code is:

ABCDEFGHIJ

Now I know 10 Tletters

Now I've made 1 function call(s).
ABCDEFGHIJ

Now I know 10 Tetters

Now I've made 2 function call(s).

Both the function definition and the code outside the function make use of variables called $count,
but they refer to different variables and do not clash.

The default behavior of variables assigned inside functions is that they do not interact with the out-
side world; they act as though they are newly created each time the function is called. Both of these
behaviors, however, can be overridden with special declarations.

Global versus local

The scope of a variable defined inside a function is local by default, meaning that (as we explained
in the previous section) it has no connection with the meaning of any variables outside the function.
Using the global declaration, you can inform PHP that you want a variable name to mean the same
thing as it does in the context outside the function. The syntax of this declaration is simply the word
global, followed by a comma-delimited list of the variables that should be treated that way, with a
terminating semicolon. To see the effect, consider a new version of the previous example. The only
difference is that we have declared $count to be global, and we have removed its initial assignment
to zero inside the function:

function SayMyABCs2 ()
{
global $count;
while ($count < 10)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count Tetters
");

91

m Introducing PHP

92

}

$count = 0;

SayMyABCs2();

$count = $count + 1;

print("Now I've made $count function call(s).
");
SayMyABCs2();

$count = $count + 1;

print("Now I've made $count function call(s).
");

Our revised version prints the following browser output:

ABCDEFGHIJ
Now I know 10 Tletters
Now I've made 11 function call(s).

Now I know 11 Tletters
Now I've made 12 function call(s).

This is buggy behavior, and the global declaration is to blame. There is now only one $count
variable, and it is being increased both inside and outside the function. When the second call to
SayMyABCs () happens, $count is already 11, so the loop that prints letters is never entered.

Although this example shows global to bad advantage, it can be quite useful, especially because (as
we'll see in Chapter 6) PHP provides some variable bindings to every page even before any of your
own code is executed. It can be helpful to have a way for functions to see these variables without the
bother of passing them in as arguments with each call.

Static variables

By default, functions retain no memory of their own execution, and with each function call local
variables act as though they have been newly created. The static declaration overrides this behav-
ior for particular variables, causing them to retain their values in between calls to the same function.
Using this, we can modify our earlier function SayMyABCs2() to give it some memory:

function SayMyABCs3 ()
{
static $count = 0; //assignment only if first time called
$1imit = $count + 10;
while ($count < $1imit)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count letters
");
1
$count = 0;
SayMyABCs3();
$count = $count + 1;

Learning PHP Control Structures and Functions

print("Now I've made $count function call(s).
");
SayMyABCs3();

$count = $count + 1;

print("Now I've made $count function call(s).
");

This memory-enhanced version gives us the following output:

ABCDEFGHIJ

Now I know 10 Tetters

Now I've made 1 function call(s).
KLMNOPQRST

Now I know 20 Tletters

Now I've made 2 function call(s).

The static keyword allows for an initial assignment, which has an effect only if the function has not
been called before. The first time SayMyABCs3 () executes, the local version of $count is set to zero.
The second time the function is called, it has the value it had at the end of the last execution, so we
are able to pick up our studies where we left off. Notice that changes to $count outside the function
still have no effect on the local value.

Exceptions

You've already seen some fairly primitive error handling in the form of die (), and you might well
imagine the custom error handling possibilities implied by the combination of control structures
and basic use of print () or printf() commands (more on this in Chapter 26). However, in prior
versions of PHP, a chief complaint was the lack of standardized means for handling errors, and sepa-
rating that means from the application code itself. Enter Exceptions.

Exceptions use the try, catch syntax similar to Java or Python, although programmers using
those languages will note the absence of finally.

Let’s start with a simple example that has no error handling at all:

function print_header($title, $keywords, $description) {
print ("<HTML><HEAD>");
print("<TITLE>$title</TITLE>");
print("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");

}

print_header('My Page',
'"PHP, Programming, Beer',
")

The custom function print_header () is designed to make it easy for us to place a standardized,

search engine—friendly header at the top of each page. However, we've left the description variable
undefined, which will not yield an error, but will leave us without a meaningful description for our

93

Introducing PHP

page. Unfortunately, because the function is essentially called correctly and PHP is forgiving in nature,
we may never know that we've left off this important detail. Some form of error handling is necessary
to point this out, and Exceptions provide a handy way of dong so. Consider this revised code:

function print_header($title, $keywords, $description) f{
if(strlen($description) < 40)
throw new Exception('A reasonable description length is
required
');
print ("<HTML><HEAD>");
print("<TITLE>$title</TITLE>");
print ("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");
}

try {
print_header('My Page'
'"PHP, Programming, Beer'
ll);
} catch (Exception $e) {
echo($e->getMessage());
}

The first new thing in our revised function is a simple test in line 2 suggesting an appropriate mini-
mum length for the $description variable. The line immediately following initiates an instance of
the Exception class with the message suggested by the quoted value.

You can create your own classes and extensions of existing classes, including those for
=& exception handling. PHP gives you Exception for free. We’ll go into much greater depth
on the sub]ect of classes in Chapter 20 and exception handling itself in Chapter 30.

Next, instead of simply calling the function, we’ve enclosed the function in a new control structure,
the try. . .catch block. If we execute the code as written, PHP first tries to execute the function
as described, then it terminates execution almost immediately, because the $description variable
has failed our simple test. At this point, the script can continue execution after the try. . .catch
block, or it can be terminated with die() or exit().

Multiple exceptions can be defined in a single function. This is a good idea because it yields more
specific information about what exactly happened. Because execution stops with the first exception,
only this exception will be caught.

Exceptions are a huge topic; they’re outlined here so that you can start using them imme-
- diately. You’ll find nods to exceptions throughout this book, but they are covered in
depth in Chapter 30.

94

Learning PHP Control Structures and Functions

Function Scope

Although the rules about the scope of variable names are fairly simple, the scoping rules for function
names are even simpler. There is just one rule in PHP6: Functions must be defined once (and only
once) somewhere in the script that uses them. (See the following note about differences between
this behavior and PHP3.) The scope of function names is implicitly global, so a function defined in

a script is available everywhere in that script. For clarity’s sake, however, it is often a good idea to
define all your functions before any code that calls those functions.

In PHP3, functions could be used only after they were defined. This meant that the safest
- practice was to define (or include the definitions of) all functions early in a given script,
before actually using any of them. Beginning with PHP4, scripts are precompiled before being run,
and one effect of this precompilation is that the compiler discovers all function definitions before actu-
ally running the code. This means that functions and code can appear in any order in a script, as long
as all functions are defined once (and only once).

Include and require

It's very common to want to use the same set of functions across a set of web site pages, and the usual
way to handle this is with either include or require, both of which import the contents of some
other file into the file being executed. Using either one of these forms is vastly preferable to cloning
your function definitions (that is, repeating them at the beginning of each page that uses them); when
you want to modify your functions, you will have to do it only once. (We covered these forms in
Chapter 3, but they are worth reviewing here in the context of including function definitions.)

For example, at the top of a PHP code file we might have lines like:

include "basic-functions.inc";
include "advanced-function.inc";
(.. code that uses basic and advanced functions ..)

which import two different files of function definitions. (Note that parentheses are optional with
both include() and require().) As long as the only things in these files are function definitions,
the order of their inclusion does not matter.

Both include and require have the effect of splicing in the contents of their file into the PHP code
at the point that they are called. The only difference between them is how they fail if the file cannot
be found. The include construct will cause a warning to be printed, but processing of the script
will continue; require, on the other hand, will cause a fatal error if the file cannot be found.

Note that incTude and require are now more similar in their behavior than they used
to be. Prior to PHP 4.0.2, require had its file contents spliced in statically, before the
actual execution of the page; whereas the contents from include were spliced in dynamically as the
page executed. Among other things, this led to subtle differences in behavior when the include/
require form was in conditional code. Now, however, both include and require have the same
dynamic behavior. This means, for example, that if an include/require formis in a loop executed
10 times, 10 inclusions will be made.

95

m Introducing PHP

96

Including only once

Sometimes you really want a file to be included once, but not more than once. This is true most
often in the case of function definitions. For example, two different function definition files might,
in turn, include the same file of utility functions — if a top-level page includes both of these files,
the utility functions might be included twice, leading to complaints from PHP that functions are
being defined twice.

To the rescue come include_once and require_once, which act just like their counterparts except
that they will not include a file named by a given string if that file has already been included. It’s usu-
ally better to use the _once version, in general, for including function and class definition files.

The include path

When you include a filename, PHP searches for a file by that name in the directories specified in
the include_path (which is settable in your php.ini file). The default path includes the same
directory as the one the top-level code page is in. See Chapter 29 for details about how to add loca-
tions to your include path.

In situations where a single instance of PHP serves several virtual sites, it’s generally easier and less
confusing to PHP to use the $_SERVER superglobal array to specify the location of an inc1lude file:

include_once($_SERVER['DOCUMENT_ROOT']."/path/to/include_file");

FSh Remember that included (and required) files are parsed by default in HTML mode rather
=SS than in PHP mode. This means that any included file meant to be interpreted as PHP needs
to have the usual PHP tags at the beginning and end, though the end tags aren’t technically required.

Recursion

Some compiled languages, like C and C++, impose somewhat complex ordering constraints on how
functions are defined. To know how to compile a function, the compiler must know about all the
functions that the function calls, which means the called functions must be defined first. So what
do you do if two functions each call the other or if one function calls itself? Issues like this led the
designers of C to a separation of function declarations (or prototypes) from function definitions (or
implementations). The idea is that you use declarations to inform the compiler in advance about the
types of arguments and return types of the functions you plan to use, which is enough information
for the compiler to handle the actual definitions in any order.

In PHP, this problem goes away, and so there is no need for separate function prototypes. As long
as each function that is called is defined once (and only once) in the current code file or one that is
included in the course of the current script’s execution, PHP will have no problem resolving func-
tion calls, regardless of the interleaving of function calls and definitions.

This means that recursive functions (functions that call themselves) are no problem in PHP4. For
example, we can define a recursive function and then immediately call it:

function countdown ($num_arg)

{

Learning PHP Control Structures and Functions

if ($num_arg > 0)

{

}
}

countdown(10);

print("Counting down from $num_arg
");
countdown($num_arg - 1);

This produces the browser output:

Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting

down
down
down
down
down
down
down
down
down
down

from
from
from
from
from
from
from
from
from
from

o

=N WS OOy N 00 WO

As with all recursive functions, it’s important to be sure that the function has a base case (a nonrecur-
sive branch) in addition to the recursive case, and that the base case is certain to eventually occur. If
the base case is never invoked, the situation is much like a while loop where the test is always true
— we will have an infinite loop of function calling. In the case of the preceding function, we know
that the base case will happen, because every invocation of the recursive case reduces the countdown
number, which must eventually become zero. Of course, this assumes that the input is a positive inte-
ger rather than a negative number or a double. Notice that our “greater than zero” test guards against
infinite recursion even in these cases, whereas a “not equal to zero” test would not.

Similarly, mutually recursive functions (functions that call each other) work without a hitch. For exam-
ple, the following definitions plus function call:

function countdown_first ($num_arg)

{

if ($num_arg > 0)

{

}
}

print("Counting down (first) from $num_arg
");
countdown_second($num_arg - 1);

function countdown_second ($num_arg)

{

if ($num_arg > 0)

{

}

print("Counting down (second) from $num_arg
");
countdown_first($num_arg - 1);

97

m Introducing PHP

98

}
countdown_first(5);

produce the browser output:

Counting down (first) from 5
Counting down (second) from 4
Counting down (first) from 3
Counting down (second) from 2
Counting down (first) from 1

Summary

PHP has a C-like set of control structures, which branch or loop depending on the value of Boolean
expressions, which in turn can be combined using Boolean operators (and, or, xor, !, &&, | |). The
structures 1 f and switch are used for simple branching; while, do-while, and for are used for
looping, and exit () or die() terminates script execution.

Most of the power of PHP resides in the large number of built-in functions provided by PHP’s benev-
olent army of open source developers. Each of these functions should be documented (albeit briefly)
in the online manual at waw.php.net.

You can also write your own functions, which are then used in exactly the same way as the built-in
functions. Functions are written in a simple C-style syntax, as in the following:

function my_function ($argl, $arg2, ..)
{

statementl;

Statement?Z;

return($value);

}

User-defined functions can use arguments of any PHP type and can also return values of any type.
The types of arguments and return values do not need to be declared.

In PHP, the ordering of function definitions and function calls makes no difference, as long as every
function that is called is defined exactly once. There is no need for separate function declarations or
prototypes. Variables assigned inside a function are local to that function, unless specified otherwise
with the global declaration. Local variables may be declared to be static, which means that they
hold onto their values in between function calls.

Finally, with our brief treatment of exceptions, we're well on our way to writing thoughtful friendly
code that uses standardized error handling.

n this chapter, we’ll briefly discuss some things you need to know

about passing data between web pages. Some of this information is not

specific to PHP but is a consequence of the PHP/HTML interaction or
of the HTTP protocol itself.

HTTP Is Stateless

The most important thing to recall about the way the web works is that the
HTTP protocol itself is stateless. If you are a poetic soul, you might say that
each HTTP request is on its own, with no direction home, like a complete
unknown . . . you know how the rest goes.

For the less lyrical among us, this means that each HTTP request — in
most cases, this translates to each resource (HTML page, . jpg file, style
sheet, and so on) being asked for and delivered — is independent of all the
others, knows nothing substantive about the identity of the client, and has
10 memory.

Even if you design your site with very strict one-way navigation (Page 1
leads only to Page 2, which leads only to Page 3, and so on), the HTTP
protocol will never know or care that someone browsing Page 2 must have
come from Page 1. You cannot set the value of a variable on Page 1 and
expect it to be imported to Page 2 by the exigencies of HTTP itself. You
can use HTTP to display a form, and someone can enter some information
using it — but unless you employ some extra means to pass the informa-
tion to another page or program, the variable will simply vanish into the
ether as soon as you move to another page.

99

IN THIS CHAPTER

HTTP is stateless

GET arguments

A better use for GET-style URLs

POST arguments

Formatting form variables

PHP superglobal arrays

m Introducing PHP

100

This is where a form-handling technology like PHP comes in. PHP will catch the variable tossed
from one page to the next and make it available for further use. PHP happens to be unusually good
at this type of data-passing function, which makes it fast and easy to employ for a wide variety of
web site tasks.

HTML forms are mostly useful for passing a few values from a given page to one single other page of
a web site. There are more persistent ways to maintain state over many pageviews, such as cookies
and sessions, which we cover in Chapter 24. This chapter will focus on the most basic techniques of
information-passing between web pages, which utilize the GET and POST methods in HTTP to create
dynamically generated pages and to handle form data.

GET Arguments

The GET method passes arguments from one page to the next as part of the Uniform Resource
Indicator (you may be more familiar with the term Uniform Resource Locator, or URL) query string.
When used for form handling, GET appends the indicated variable name(s) and value(s) to the URL
designated in the ACTION attribute with a question mark separator and submits the whole thing to
the processing agent (in this case a web server).

This is an example HTML form using the GET method (save the file under the name sportselect
.html):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>A GET method example, part 1</TITLE>

</HEAD>

<BODY>

<FORM ACTION="sports.php" METHOD="GET">
<P>Choose your favorite sport:

<SELECT NAME="Sport">

<OPTION VALUE="Baseball">Baseball</0OPTION>
<OPTION VALUE="Basketball">Basketball</OPTION>
<OPTION VALUE="Football">Football</OPTION>
<OPTION VALUE="Ice Hockey">Ice Hockey</OPTION>
<OPTION VALUE="Racing">Auto Racing</OPTION>
<OPTION VALUE="Soccer">Soccer</0OPTION>
</SELECT>

<P>CINPUT TYPE="submit" NAME="Submit" VALUE="Select"></P>
</FORM>

</BODY>

</HTML>

Passing Information with PHP

When the user makes a selection and clicks the Submit button, the browser agglutinates these ele-
ments in this order, with no spaces between the elements:

The URL in quotes after the word ACTION (http://localhost/baseball.php)

A question mark (?) denoting that the following characters constitute a GET string.

A variable NAME, an equal sign, and the matching VALUE (Team=Cubbies)

An ampersand (&) and the next NAME-VALUE pair (Submit=Select); further name-value
pairs separated by ampersands can be added as many times as the server query-string-
length limit allows.

The browser thus constructs the URL string;

http://<your-server-name>/sports.php?Sport=Icet+Hockey&Submit=Select

It then forwards this URL into its own address space as a new request. The PHP script to which the
preceding form is submitted (sports.php) will grab the GET variables from the end of the request
string, stuff them into the $_GET superglobal array (explained in a moment), and do something use-
ful with them — in this case, plug one of two values into a text string.

The following code sample shows the PHP form handler for the preceding HTML form:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>A GET method example, part 2</TITLE>
(STYLE TYPE="text/css">

<l--

BODY {font-size: 24pt;}

-->

</STYLE>

</HEAD>

<BODY>
<{P>You've indicated that you Tike
<?php echo $_GET['Sport']; ?>!</P>
</BODY>
</HTML>

Note that the value inputted into the previous page’s HTML form field named “Sport“is now avail-

able in a PHP variable called $_GET['Sport']. Finally, you should see a page that says You've indi-
cated that you like Ice Hockey! in big type.

101

Introducing PHP

102

At this point, it makes some sense to explain just how to access values submitted from

. page to page. This chapter discusses the two main methods for passing values: GET and
POST (there are others, but they are not covered until Part I1l). Each method has an associated super-
global array, explained in more depth in Chapter 8, which can be distinguished from other arrays by the
underscore that begins its name. Each item submitted via the GET method is accessed in the handler via
the $_GET array; each item submitted via the POST method is accessed in the handler via the $_P0OST
array. The syntax for referencing an item in a superglobal array is simple and 100 percent consistent:

$_ARRAY_NAME["index_name"']

where the index_name is the name part of a name-value pair (for the GET method), or the name of an
HTML form field (for the POST method). As in the preceding example, $_GET['Sport '], indicates the
value of the form select field called 'Sport’', sent by the GET operation in the original file. You must
use the array appropriate to the method used to send data. In this case, $_POST['Sport '] is unde-
fined because no data was POSTed by the original form.

The GET method of form handling offers one big advantage over the POST method: It constructs an
actual new and differentiable URL query string. Users can now bookmark this page. The result of
forms using the POST method is not bookmarkable.

Just because you can achieve the desired functionality with GET arguments doesn’t mean you should.
The disadvantages of GET for most types of form handling are so substantial that the original HTML
4.0 draft specification deprecated its use in 1997. These flaws include:

® The GET method is not suitable for logins because the username and password are fully vis-
ible onscreen as well as potentially stored in the client browser’s memory as a visited page.

B Every GET submission is recorded in the web server log, data set included.

Because the GET method assigns data to a server environment variable, the length of the URL
is limited. You may have seen what seem like very long URLs using GET — but you really
wouldn’t want to try passing a 300-word chunk of HTML-formatted prose using this method.

The original HTML spec called for query strings to be limited to 255 characters. Although
this stricture was later loosened to mere encouragement of a 255-character limit, using a
longer string is asking for trouble.

The GET method of form handling had to be reinstated by the W3C after much outcry, largely
because of the bookmarkability factor. Despite that it’s still implemented as the default choice for
form handling in all browsers, GET now comes with a strong recommendation to deploy it in idem-
potent usages only — in other words, those that have no permanent side effects. Putting two and two
together, the single most appropriate form-handling use of GET is the search box. Unless you have a
compelling reason to use GET for non-search-box form handling, use POST instead.

A Better Use for GET-Style URLs

Although the actual GET method of form handling is deprecated, the style of URL associated with it
turns out to be very useful for site navigation. This is especially true for dynamically generated sites
such as those often constructed with PHP, because the appended-variable style of URL works par-
ticularly smoothly with a template-based content-development system.

Passing Information with PHP

As an illustration, imagine you are the proud proprietor of an information-rich web site about solar
cars. You've toiled long and hard over informative and attractive pages such as these:

Suspension_design.html
Windtunnel_testing.html
friction_braking.html

But as your site grows, a flat-file site structure like this can take a lot of time to administer, as even
the most trivial changes must be repeated on every page. If the structure of these pages is very simi-
lar, you might want to move to a template-based system with PHP.

You might decide to utilize a single template with separate text files for each topic (containing infor-
mation, photos, comments, and so on):

topic.php
suspension_design.inc
windtunnel_testing.inc
friction_braking.inc

Or you might decide you needed a larger, more specialized choice of template files:

Vehicle_structure.php
Tubular_frames.inc
Mechanical_systems.php

Friction_braking.inc
Electrical_systems.php

Solar_array.inc
racing.php

race_strategy.inc

A simple template file might look something like this (because we haven't included the necessary
.inc text files, this example will not actually work):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>Solar-car topics</TITLE>

(STYLE TYPE="text/css">

<l--

BODY {font: verdana; font-size: 12pt}
-=>

</STYLE>

</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH="100%">
<TR>
<!-- Navbar, with Get-style URLs. -->
<TD ALIGN=CENTER VALIGN=TOP>
<P>

103

m Introducing PHP

104

Friction braking

Steering

Suspension

Tires and wheels

<P
</TD>

<{!-- Main body of content -->

<TD ALIGN=LEFT VALIGN=TOP>

<?php include($_GET["'Name'] . "inc"); 7>
</TD></TR></TABLE>

</BODY>

</HTML>

Notice that the links on the navbar, when clicked, will be handled by the browser as if they were the
product of a GET submission.

But even with this solution, you still have to tend part of your garden by hand: making sure that each
include file is properly formatted in HTML, adding a new link to the navbar each time you add a new
page to the site, and other such chores. Following the general rule to separate form and content as much
as is feasible, you might choose to go to another level of abstraction with a database. In that case, a URL
suchas http://www.example.com/topic.php?topicID=2 would point to a PHP template that
makes database calls. (Using a number variable rather than a word makes for faster database interac-
tion.) This system could also automatically add a link to the navbar whenever you added new topics

to the database, so it could produce web pages entirely without ongoing human intervention (all right,
maybe entirely is an exaggeration — but with significantly fewer person-hours of grunt labor).

POST Arguments

POST is the preferred method of form submission today, particularly in nonidempotent usages (those
that will result in permanent changes), such as adding information to a database. The form data set
is included in the body of the form when it is forwarded to the processing agent (in this case, PHP).
No visible change to the URL will result according to the different data submitted.

The POST method has one primary advantage:

B There is a much larger limit on the amount of data that can be passed (a couple of mega-
bytes rather than a couple of hundred characters).

Passing Information with PHP _

POST has these disadvantages:

B The results at a given moment cannot be bookmarked.

B Browsers exhibit different behavior when the visitor uses their Back and Forward naviga-
tion buttons within the browser.

There is a misguided belief that POST is more secure than GET. In reality, neither offers any more
security than the other. The visitor can still view variables and data being sent with a POST just as
they can with a GET. The only difference is that the data doesn’t show up in the address bar. This
doesn’t mean that it'’s hidden. Data sent with a POST can be viewed and altered by the web site user.

The first and most important rule of programming, especially web programming is:
Never Trust Input

Always assume that the visitor has either maliciously or accidentally altered the data being passed
into your application, and validate the data.

Only when the request is secured using SSL or TLS or some other form of encryption is the form
data somewhat secure. Nevertheless, the end user or visitor can still see and alter the data. SSL
merely encrypts the data in transit, preventing prying eyes on the network from looking at it. SSL
does nothing to prevent the visitor from changing form data.

I'll cover much more about security throughout the book. I believe security needs to be included in
every aspect of programming, and, therefore, you'll see security tips when appropriate and within
context, rather than trying to make sense of them in a specific chapter. Chapter 28 will examine
PHP security, concentrating on overall best practices and also server security, as well.

Get and Post Both

Did you know that with PHP you can use both GET and POST variables on the same page? You might want
to do this for a dynamically generated form, for example.

But what if you (deliberately or otherwise) use the same variable name in both the GET and the POST variable
sets? PHP keeps all ENVIRONMENT, GET, POST, COOKIE, and SERVER variables in the $GLOBALS array if you
have set the register_globals configuration directive to “on” in your php.ini file (doing so creates a
security risk). If there is a conflict, it is resolved by overwriting the variable values in the order you set, using the
variables_order optionin php.ini. Later trumps earlier, so if you use the default "EGPCS" value, cookies
will triumph over POSTs that will themselves obliterate GETs. You can control the order of overwriting by simply
changing the order of the letters on the appropriate line of this file, or even better, turning register_globals
off and using the new PHP superglobal arrays instead. See the section on superglobals later in this chapter.

105

Introducing PHP

106

Formatting Form Variables

PHP is so efficient at passing data around because the developers made a very handy but (in theory)
slightly sketchy design decision. PHP automatically, but invisibly, assigns the variables for you on
the new page when you submit a data set using GET or POST. Most of PHP’s competitors make you
explicitly do this assignment yourself on each page; if you forget to do so or make a mistake, the
information will not be available to the processing agent. PHP is faster, simpler, and mostly more
goof-proof.

But because of this automatic variable assignment, you need to always use a good NAME attribute for
each INPUT. NAME attributes are not strictly necessary in HTML proper — your form will render fine
without them — but the data will be of little use because the HTML form-field NAME attribute will
be the variable name in the form handler.

In other words, in this form:

<FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>"
METHOD="POST">

CINPUT TYPE="text" NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

the text field named email will cause the creation of a PHP variable called $_POST['email"']
when the form is submitted. Similarly, the submit button will lead to the creation of a variable called
$_POSTL'submit'] on the next page. The name you use in the HTML form will be the name of
your variable in the PHP form handler.

$HTTP_POST_VARS, $HTTP_SERVER_VARS, and the whole family of these long-form
predefined variables were deprecated in PHP5. If you are already an experienced PHP
programmer, perhaps with a large body of previously written code lying around, you might want to
think about rewriting now for backward compatibility. They are supported for the time being, but their
days are numbered. Use $_POST, $_GET, and friends instead.

Remember that you cannot use a variable name beginning with a number — so you should not
name your form field something like 5 (you laugh, but we’ve seen people try to do it) — and PHP
variable names are case sensitive. Also, please try to use informative variable names rather than a
succession of form fields named myvar and e.

It’s a good idea to standardize how you name form variables, to make your code more
readable and so that you spend less time flipping back to the form itself when you are
supposed to be writing code to process that form. For example, you might precede all form variables
with frm to indicate their source. You might then consistently use the first few letters of each identify-
ing word for what a field does, for example, frmNameFirst, frmOfficeAdd, frmHomeAdd, and so
on. The specific standard you set is less important than having a standard to begin with.

Passing Information with PHP _

Another thing to keep in mind when creating your HTML forms is that, if you ever want this form to
be displayed with prefilled inputs, you need to set the VALUE attribute. This is particularly relevant
to two kinds of forms: those that are used to edit data from a database, and those that are intended
to possibly be submitted more than once. The latter case is very common in situations where a form
should redisplay on error with values already prefilled — for instance, a registration form that will
not work until the user provides a valid e-mail address or other required data.

For example, the form in Listing 6-1 (which represents a retirement savings calculator) is designed
to be submitted multiple times while the user fiddles around with the values. Every time you submit
the form, the values from the previous go-round will be filled in for you automatically. Note the use
of the VALUE attribute in the form fields in this code sample.

LISTING 6-1

Form with prefilled values (retirement_calc.php)

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/TR/htm14/
strict.dtd">

<HTML>

<HEAD>

KTITLE>A POST example: retirement savings worksheet</TITLE>
{STYLE TYPE="text/css">

<h--

BODY {font-size: l4pt}

.heading {font-size: 18pt; color: red}

>

</STYLE>

</HEAD>

<?php

// This test, along with the Submit button value in the form
// below, will check to see if the form is being rendered for
// the first time (in which case it will display with only the
// default annual gain filled in).

if (11sSet($_POST['Submit']) || $_POST['Submit'] != 'Calculate’)
{

$_POSTL'CurrentAge'] = "";

$_POSTL'RetireAge'] = "";

$_POSTL"Contrib']l = "";

$Total = 0;
$AnnGain = 7;
} else {
$AnnGain $_POST['AnnGain'J;

$Years = $_POST['RetireAge'] - $_POST['CurrentAge'];
$YearCount = 0;

107

m Introducing PHP

$Total = $§_POST['Contrib'];

while ($YearCount <= $Years) {
$Total = round($Total * (1.0 + $AnnGain/100) +
$_POST['Contrib'1);
$YearCount = $YearCount + 1;
t
}
2>
<BODY>

<DIV ID="Divl" class="heading">
A retirement-savings calculator</DIV>

<P class=blurb>Fill in all the values (except "Nest Egg")
and see how much money you'll have for your retirement

under different scenarios. You can change the values and
resubmit the form as many times as you like. You must fill
in the two "Age" variables. The "Annual return" variable has
a default inflation-adjusted value (7% = 8% growth minus 1%
inflation) which you can change to reflect your greater
optimism or pessimism.</P>

<FORM ACTION="<?php echo $_SERVER['PHP_SELF"']; ?>"
METHOD="POST">

<P>Your age now:

<INPUT TYPE="text" SIZE=5 NAME="CurrentAge"
VALUE="<?php echo $ _POST['CurrentAge']; ?>">
<P>The age at which you plan to retire:

<INPUT TYPE="text" SIZE=6 NAME="RetireAge"
VALUE="<?php echo $_POST['RetireAge']; ?>">
<P>Annual contribution:

<INPUT TYPE="text" SIZE=15 NAME="Contrib"
VALUE="<?php echo $_POST['Contrib']; 2>">
<P>Annual return:

CINPUT TYPE="text" SIZE=5 NAME="AnnGain"
VALUE="<?php echo $AnnGain; ?>"> %

<P>NEST EGG: <?php echo $Total; ?>
<P>CINPUT TYPE="submit" NAME="Submit" VALUE="Calculate">
</FORM>

</BODY>

</HTMLS

Figure 6-1 shows the result of the Listing 6-1.

108

FIGURE 6-1

Passing Information with PHP _

A form using the POST method with VALUE attributes

%3 a POST example: retirement savings worksheet - Mozilla Firefox K = |E||5[
File Edit Wiew History Bookmarks Tools Help

@ - |:1‘> - @ U ﬂ http:,i,iwww.bralng\a.nrg;‘buoks,ﬂ|'| P] |'|Googla ‘Lg]

A retirement-savings calculator

Fill in all the values (except "Nest Egg') and see how much money you'll
have for your retirement under different scenarios. You can change the
values and resubmit the form as many times as vou like. You must fill in
the two "Age" variables. The "Annual return" variable has a default
inflation-adjusted value (7% = %6 growth minus 1% inflation) which you
can change to reflect your greater optimism or pessimism.

Your age now: |23

The age at which you plan to retire: |55

Annual contribution: |51 50

Annual return: |7 %

NEST EGG: 660542

Calculate I =

| Dione |

Consolidating forms and form handlers

As you can see in the preceding example, it is often handy to make the HTML form and the form
handler into one script. This practice has many advantages, such as making it easier to change the
name of the file without harming functionality, making it easier to display error messages and pre-
filled form fields, and achieving better control over your variable namespace. Suppose that you are
making a login form that redisplays with an error message if the login is unsuccessful. If you have
separate forms and form handlers, youll probably have to do something yucky with GET vars and
redirection. If you consolidate, it’s very simple to control the display without these machinations.

Iy

s Q VLT

A SRR

1770 Lqcnrdees To see how these techniques can be used with data from MySQL, see Chapter 17.

When you consolidate, generally the form-handling code should come before the form display. This
order may be something of a shift in thinking for those who are used to writing the form before the
handler, but if you think it through, you will see the logic of the practice. You have to give yourself
an opportunity to set variables and make choices before you can decide what to show the user. This

109

m Introducing PHP

110

is especially relevant if you will be redirecting the user to a different page under certain circum-
stances, via the header () function, because this decision point must come before any HTML out-
put has been displayed to the browser.

PHP Superglobal Arrays

A change that has been coming for a long time in PHP is the gradual phasing out of automatic global
variables in favor of superglobal arrays, which were introduced in PHP4. Understanding superglobal
arrays before you understand arrays may present difficulties; if so, we recommend that you read
Chapter 8 and come back to this section later.

In the good old days before PHP4.1, you could write a piece of code like this and expect it to work:

<?php
if (isSet($submit))
echo $email;
} else {
7>
<FORM ACTION="<?php echo $PHP_SELF; ?>" METHOD="POST">
<INPUT TYPE="text" NAME="email">
<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

All GET, POST, COOKIE, ENVIRONMENT, and SERVER variables were made global by the register_
globals directive in php.ini and were directly accessible by their names by default.

The PHP team decided to phase out the practice of registering globals, forcing everyone to call these
variables as indices in an array (for example, $_POST['secretpassword']). This had already been
possible in PHP4, via arrays named $HTTP_GET_VARS, $HTTP_POST_VARS, $HTTP_POST_VARS,
and so on, but few developers had used this syntax; frankly, it was a lot of extra keystrokes for a
small increase in security. So the PHP team also took this opportunity to rename these arrays with
shorter names: $_GET, $_POST, $_COOKIE, $_ENV, and $_SERVER.

These superglobal arrays also have one cool feature that may ameliorate some pain: They are auto-
matically global everywhere. This means, for instance, that you no longer have to pass cookie values
into a function or declare the $HTTP_COOKIE_VARS array global before you can access those values
in a function. This will help those who functionalize to the max and will be a small amelioration for
everyone else.

As of PHP6, register_globals is officially gone.

Passing Information with PHP

Summary

The HTTP protocol is stateless. This means a plain HTML page is incapable of receiving informa-
tion from any other page. It can be used to pass values via a URL or an HTML form, but a separate
program called a form handler must step in to recognize and perform actions on the passed values.
In first-generation web development, these form handlers were Perl or C CGI scripts, but nowadays
web developers are more likely to use an HTML-embedded programming language such as PHP.
PHP makes it particularly easy to write form handlers and even to combine them with HTML dis-
play on a single web page.

Information is passed between web pages using one of four main methods: GET, POST, a cookie, or
sessions. GET is mainly used to construct complex URL strings for use with dynamically generated
pages. Forms are a good way to pass information from one web page to a single other web page. We
deal with the persistent state methods, cookies, and sessions in Chapter 24.

111

Ithough images, sound files, videos, animations, and applets make
up an important portion of the World Wide Web, much of the web IN THIS CHAPTER
is still text — one character’s worth after another, like this sen- Strings in PHP
tence. The basic PHP data type for representing text is the string.

String functions

In this chapter, we cover almost all PHP’s capabilities for manipulating strings
(although we leave more advanced string functions and the pattern-matching
power of regular expressions for separate treatment in Chapter 22). We start
with the basics of strings, then move to the most commonly used operators
and functions.

Strings in PHP

Strings are sequences of characters that can be treated as a unit — assigned
to variables, given as input to functions, returned from functions, or sent
as output to appear on your user’s web page. The simplest way to specify a
string in PHP code is to enclose it in quotation marks, whether single quo-
tation marks (') or double quotation marks ("), like this:

$my_string = 'A Titeral string';
$another_string = "Another string";

The difference between single and double quotation marks lies in how
much interpolation PHP does of the characters between the quote signs
before creating the string itself. If you enclose a string in single quota-
tion marks, almost no interpolation will be performed; if you enclose it in

113

m Introducing PHP

114

double quotation marks, PHP will splice in the values of any variables you include, as well as make
substitutions for certain special character sequences that begin with the backslash (\) character. For
example, if you evaluate the following code in the middle of a web page:

$statement = 'everything I say';
$question_1 =

"Do you have to take $statement so literally?\n
";
$question_2 =

'Do you have to take $statement so literally?\n
';
echo $question_1;
echo $question_2;

you should expect to see the browser output:

Do you have to take everything I say so literally?
Do you have to take $statement so Titerally?\n

| For the details on exactly how PHP interprets both singly and doubly quoted strings, see
the “Strings” section of Chapter 4.

Interpolation with curly braces

In most situations, you can simply include a variable in a doubly quoted string, and the variable’s
value will be spliced into the string when it is interpreted. There are two situations where the string
parser might very reasonably get confused and need more guidance from you. The first situation is
when your notion of where the variable name should stop is not the same as the parser’s, and the
other occurs when the expression you want to have interpolated is not a simple variable. In these
cases, you can clear things up by enclosing the value you want interpolated in curly braces: {}.

For example, PHP has no difficulty with the following code:

$sport = 'volleyball';
$plan = "I will play $sport in the summertime";

The parser in this case encounters the $ symbol, and then begins collecting characters for a vari-
able name until it runs into the space after $sport. Spaces cannot be part of a variable name, so it
is clear that the variable in question is $sport, and PHP successfully finds a value for that variable
("volleyball"), and splices the value in.

Sometimes, though, it is not convenient to stop a variable name with a space. Take this example:

$sportl = 'volley';

$sport? "foot';

$sport3 "basket';

$planl = "I will play $sportlball in the summertime"; //wrong
$plan2 = "I will play $sport2ball in the fall"; //wrong
$plan3 "I will play $sport3ball in the winter"; //wrong

Learning PHP String Handling

You will not get the desired effect here, because PHP interprets $sport1 as part of the variable
name $sportlball, which is probably unbound. Instead, you need something like:

$planl = "I will play {$sportliball in the summertime"; //right
which asks PHP to evaluate only the variable expression within the braces before interpolating.

For similar reasons, PHP has difficulty interpolating complex variable expressions, such as multi-
dimensional arrays and object variables, unless curly braces are used. The general rule is that if you
have a { immediately followed by a $, PHP will evaluate the variable expression up until the closing
} and will interpolate the resulting value into the string. (If you need a literal {$ to appear in your
string, you can accomplish it by escaping either character with a backslash (\)).

| See the “Concatenation and Assignment” section later in this chapter for ideas on other
ways to address challenges like this.

Characters and string indexes

Unlike some programming languages, PHP has no distinct character type different from the string
type. In general, functions that would take character arguments in other languages expect strings of
length 1 in PHP.

You can retrieve the individual characters of a string by including the number of the character, start-
ing at 0, enclosed in curly braces immediately following a string variable. These characters will actu-
ally be one-character strings. For example, the following code:

$my_string = "Doubled";

for ($index = 0; $index < 7; $index++) {
$string_to_print = $my_string{$index};
print("$string_to_print$string _to print");

}

gives the browser output:

DDoouubblleedd

with each character of the string being printed twice per loop. (The number 7 is hardcoded in this
example only because we haven't yet covered how to find out the length of a string — see the func-
tion strlen() in the later section “Inspecting strings.”)

String operators

PHP offers two string operators: the dot (.) or concatenation operator and the .= concatenating
assignment operator. The concatenating assignment operator is discussed in the next section. The
concatenation operator, when placed between two string arguments, produces a new string that is
the result of putting the two strings together in sequence. For example:

$my_two_cents = "I want to give you a piece of my mind ";

115

m Introducing PHP

116

$third_cent = " And another thing";
print($my_two_cents . "..." . $third_cent);

gives the output:

I want to give you a piece of my mind ... And another thing

Note that we are not passing multiple string arguments to the print statement — we are handing it
one string argument, which was created by concatenating three strings together. The first and third
strings are variables, but the middle one is a literal string enclosed in double quotation marks.

Note that the concatenation operator is not + as in Java, and it does not overload any-
thing else. If you forget this and add strings using +, they will be interpreted as numbers,
with the result that 'one' + 'two' equals O (because no successful string-to-number conversion can
be made).

Concatenation and assignment
Just as with arithmetic operators, PHP has a shorthand operator (. =) that combines concatenation
with assignment. The following statement:
$my_string_var .= $new_addition;
is exactly equivalent to:

$my_string_var = $my_string_var . $new_addition;

Note that, unlike commutative addition and multiplication, with this shorthand operator it matters
that the new string is added to the right. If you want the new string tacked on to the left, there’s no
alternative shorter than:

$my_string_var = $new_addition . $my_string_var;

Note also that unassigned variables are treated as empty strings for the purposes of concatenation,
so $my_string_var will end up unchanged if $new_addition has never been given a value.

The heredoc syntax

In addition to the single-quote and double-quote syntaxes, PHP offers another way to specify a
string, called the heredoc syntax. This syntax turns out to be extremely useful for specifying large
chunks of variable-interpolated text, because it spares you from the need to escape internal quota-
tion marks. It is especially useful in creating pages that contain HTML forms.

The operator in the heredoc syntax is <<<. What is expected immediately after this is a label
(unquoted) that indicates the beginning of a multiline string. PHP will continue including subse-
quent lines in this string until it sees the same label again, beginning a line. The ending label may
optionally be followed by a semicolon but by nothing else.

Learning PHP String Handling

For example:

$my_string_var = <<KLEOT

Everything in this rather unnecessarily wordy

ramble of prose will be incorporated into the

string that we are building up inevitably, inexorably,
character by character, Tine by Tline, until we reach that
blessed final line which is this one.

EOT;

Note that the preceding final EOT must not be indented at all — otherwise it will be taken to be just
more text to be included. The label need not be literally EOT — it can be whatever you like within
the normal rules for variable names in PHP.

Interpolation of variables happens exactly the same way as with double-quoted strings. The nice
thing about heredoc, though, is that quote signs can be included without any escaping and without
prematurely terminating the string. Here’s another example:

echo <<<ENDOFFORM

<FORM METHOD=POST ACTION="{$_ENV['PHP_SELF'1}">
<INPUT TYPE=TEXT NAME=FIRSTNAME VALUE=$firstname>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>

ENDOFFORM;

This has the effect of echoing a very simple form to the browser.

String Functions

PHP gives you a huge variety of functions for the munching and crunching of strings. If you're ever
tempted to roll your own function that reads strings character by character to produce a new string,
pause for a moment to think whether the task might be common. If so, there is probably a built-in
function that handles it.

For more information on string functions see http://php.net/manual/en/ref.strings.php.

In this section, we present the basic functions for inspecting, comparing, modifying, and printing
strings. If you want to be really comfortable with string manipulation in PHP, you should probably
have at least a passing acquaintance with everything in this section. Both the regular expression
functions and the more abstruse string functions can be found in Chapter 22.

& A note for C programmers: Many of the PHP string function names should be familiar to

you. Just keep in mind that, because PHP takes care of memory management for you, the
functions that return strings are allocating the string storage on their own and do not need to be given

a preallocated string to write into.

117

Introducing PHP

118

Inspecting strings
What kinds of questions can you ask strings? First on the list is how long the string is, using the
strlen() function (the name is short for string length).

$short_string = "This string has 29 characters";
print("It does have " . strlen($short_string)
" characters");

This code gives the following output:

It does have 29 characters

Knowing the string’s length is particularly useful in form validation or for situations in which we’d
like to loop through a string character by character. A useless but illustrative example, using the pre-
ceding example string, is:

for ($index = 0; $index < strlen($short_string); $index++)
print($short_string{$index});

This simply prints:
This string has 29 characters

which is the string we started with.

Finding characters and substrings

The next question you can ask your strings is what they contain. For example, the strpos () func-
tion finds the numerical position of a particular character in a string, if it exists.

$twister = "Peter Piper picked a peck of pickled peppers";
print("Location of 'p' is " . strpos($twister, 'p') .'
");
print("Location of 'q' is " . strpos($twister, 'q') .'
');

This gives us the browser output:

Location of 'p' is 8
Location of 'q' is

The 'q" location is apparently blank because strpos () returns false if the character in question
cannot be found, and a false value prints as the empty string. You should note that the strpos()
function is case sensitive.

The strpos () function is one of those cases where PHP’s type-looseness can be prob-

' lematic. If no match can be found, the function returns a false value; if the very first
character is a match, the function returns 0 (because the indexing count starts with 0 rather than 1).
Both of these values look false if used in a Boolean test. One way to distinguish them is to use the iden-
tity comparison operator (===, introduced as of PHP4), which is true only if its arguments are the same
and of the same type — you can use it to test if the returned value is O (or is FALSE) without risk of
confusion with other values that might be the same after type coercion.

Learning PHP String Handling

The strpos () function can also be used to search for a substring rather than a single character,

simply by giving it a multicharacter string rather than a single-character string. You can also supply

an extra integer argument specifying the position to begin searching forward from.

Searching in reverse is also possible, using the strrpos () function. (Note the extra r, which you
can think of as standing for reverse.) This function takes a string to search and a single-character
string to locate, and it returns the last position of occurrence of the second argument in the first

argument. (Unlike with strpos (), the string searched for must have only one character.) If we use

this function on our example sentence, we find a different position:

$twister = "Peter Piper picked a peck of pickled peppers";
printf("Location of 'p' is " . strrpos($twister, 'p') .'
");

Specifically, we find the third p in peppers:

Location of 'p' is 40

Are strings immutable?

In some programming languages (such as C), it is common to manipulate strings by directly changing
them — that is, storing new characters into the middle of an existing string, replacing old characters. Other
languages try to keep the programmer out of certain kinds of trouble by making string classes that are immutable
(or unchangeable) — you can make new strings by creating modified copies of old ones, but once you have
made a string, you are not allowed to change it by directly changing the characters that make it up.

Where does PHP fit in? As it turns out, PHP strings can be changed, but the most common practice seems to
be to treat strings as immutable.

Strings can be changed by treating them as character arrays and assigning directly into them, like this:
$my_string = "abcdefg";

$mysstringlsld =X "s

print($my_string . "
");

which will give the browser output:

abcdeXg

This modification method seems to be undocumented, however, and shows up nowhere in the online manual,
even though the corresponding extraction method (now updated to use curly braces) is highlighted. Also, almost
all PHP string-manipulation functions return modified copies of their string arguments rather than making direct
changes, which seems to indicate that this is the style that the PHP designers prefer. Our advice is not to use
this direct-modification method to change strings, unless you know what you are doing and there is some large
benefit in terms of memory savings.

119

Introducing PHP

Comparison and searching

Is this string the same as that string? It's a question that your code is likely to have to answer fre-
quently, especially when dealing with input typed by the end user.

For the == operator, two strings are the same if they contain exactly the same sequence
of characters. It does not test any stricter notion of being the same, such as being stored
at the same memory address, but it does pay attention to case (or capitalization).

The simplest method to find an answer is to use the basic comparison operator (==), which does
equality testing on strings as well as numbers.

Comparing two strings using == (or the corresponding < and > operators) is trustworthy
; if both the arguments are strings and if you know that no type conversion is being per-
formed. (See Chapter 4 for more on this.) Using strcmp () (described next) is always trustworthy.

The most basic workhorse string-comparison function is strcmp (). It takes two strings as argu-
ments and compares them byte by byte until it finds a difference. It returns a negative number if the
first string is less than the second and a positive number if the second string is less. It returns 0 if
they are identical.

The strcasecmp () function works the same way, except that the equality comparison is case
insensitive. The function call strcasecmp("hey!", "HEY!") should return 0.

Searching

The comparison functions just described tell you whether one string is equal to another. To find
out if one string is contained within another, use the strpos () function (covered earlier) or the
strstr() function (or one of its relatives).

The strstr() function takes a string to search in and a string to look for (in that order). If it suc-
ceeds, it returns the portion of the string that starts with (and includes) the first instance of the
string it is looking for. If the string is not found, a false value is returned. Here is a successful search
followed by an unsuccessful search:

$string_to_search = "showsuponceshowsuptwice";

$string_to_find = "up";

print("Result of Tooking for $string_to_find"
strstr($string_to_search, $string_to_find) . "
");

$string_to_find = "down";

print("Result of Tooking for $string_to_find"
strstr($string_to_search, $string_to find));

which gives us:

Result of Tooking for up: uponceshowsuptwice
Result of Tooking for down:

120

Learning PHP String Handling

The blank space after the colon in the second line is the result of trying to print a false value, which
prints as the empty string. The strstr() function also has an alias by the name of strchr ().
Other than the name, the two functions are identical. Just as with strcmp (), strstr() has a case-
insensitive version, by the name of stristr(). (That i in the middle stands for insensitive.) It is
identical to strstr() in every way, except that the comparison treats lowercase letters as indistin-
guishable from their uppercase counterparts. The string functions we have covered so far are sum-
marized in Table 7-1.

TABLE 7-1

Simple Inspection, Comparison, and Searching Functions

Function Behavior
strien() Takes a single string argument and returns its length as an integer.
strpos() Takes two string arguments: a string to search, and the string being searched for.

Returns the (0-based) position of the beginning of the first instance of the string if
found and a false value otherwise. It also takes a third optional integer argument,
specifying the position at which the search should begin.

strrpos() Like strpos (), except that it searches backward from the end of the string, rather
than forward from the beginning. The search string must only be one character long,
and there is no optional position argument.

stremp() Takes two strings as arguments and returns O if the strings are exactly equivalent. If
strcmp () encounters a difference, it returns a negative number if the first different
byte is a smaller ASCII value in the first string, and a positive number if the smaller
byte is found in the second string.

strcasecmp() Identical to strcmp (), except that lowercase and uppercase versions of the same
letter compare as equal.

strstr() Searches its first string argument to see if its second string argument is contained in it.
Returns the substring of the first string that starts with the first instance of the second
argument, if any is found — otherwise, it returns false.

strchr() Identical to strstr().

stristr() Identical to strstr() except that the comparison is case independent.

Substring selection

Many of PHP’s string functions have to do with slicing and dicing your strings. By slicing, we mean
choosing a portion of a string; by dicing, we mean selectively modifying a string. Keep in mind that
(most of the time) even dicing functions do not change the string you started out with. Usually, such
functions return a modified copy, leaving the original argument intact.

121

m Introducing PHP

The most basic way to choose a portion of a string is the substr () function, which returns a new
string that is a subsequence of the old one. As arguments, it takes a string (that the substring will be
selected from), an integer (the position at which the desired substring starts), and an optional third
integer argument that is the length of the desired substring. If no third argument is given, the sub-
string is assumed to continue until the end. (Remember that, as with all PHP arguments that deal
with numerical string positions, the numbering starts with O rather than 1.)

For example, the statement:

echo(substr("Take what you need, and Teave the rest behind",
23));

prints the string Teave the rest behind, whereas the statement:

echo(substr("Take what you need, and leave the rest behind",
5, 13));

prints what you need — a 13-character string starting at (0-based) position 5.

Both the start-position argument and the length argument can be negative, and in each case the neg-
ativity has a different meaning. If the start position is negative, it means that the starting character

is determined by counting backward from the end of the string, rather than forward from the begin-
ning. (A start position of -1 means start with the last character, -2 means second to last, and so on.)

Now, you might expect that a negative length would similarly imply that the substring should be
determined by counting backward from the start character rather than forward. This is not the case
— it is always true that the character at the start position is the first character in the returned string
(not the last). Instead, a negative-length argument means that the final character is determined by
counting backward from the end rather than forward from the start position.

Here are some examples, with positive and negative arguments:

$alphabet_test = "abcdefghijklmnop";

print("3: " . substr($alphabet_test, 3) . "
");
print("-3: " . substr($alphabet_test, -3) . "
");
print("3, 5: " . substr($alphabet_test, 3, 5) . "
");
print("3, -5: " . substr($alphabet _test, 3, -5) . "
");
print("-3, -5: " . substr($alphabet_test, -3, -5) . "
");
print("-3, 5: " . substr($alphabet_test, -3, 5) . "
");

This gives us the output:

3: defghijkImnop

-3: nop

3, 5: defgh

3, -5: defghijk
-3, -5

-3, 5: nop

122

Learning PHP String Handling

Notice that there is an intimate relationship between the functions substr(), strstr(), and
strpos(). The substr () function selects a substring by numerical position, strstr() selects

a substring by its content, and strpos () finds the numerical position of a given substring. In the
case where we're sure in advance that the string $containing has the string $contained as a sub-
string, the expression:

strstr($containing, $contained)
should be equivalent to the code:

substr($containing, strpos($containing, $contained))

String cleanup functions

Although they are technically substring functions, just like the others in this chapter, the functions
chop(), 1trim(), and trim() are really used for cleaning up untidy strings. They trim whitespace
off the end, the beginning, and the beginning and end, respectively, of their single string argument.
Some examples:

$original = More than meets the eye ;
$chopped = chop($original);

$1trimmed = 1trim($original);

$trimmed = trim($original);

print("The original is '$original "
");
print("Its Tength is " . strlen($original) . "
");
print("The chopped version is '$chopped'
");
print("Its Tength is " . strlen($chopped) . "
");
print("The Ttrimmed version is '$1trimmed'
");
print("Its length is " . strlen($ltrimmed) . "
");
print("The trimmed version is '$1trimmed'
");
print("Its Tength is " . strlen($trimmed) . "
");

The result as viewed by a browser is:

The original is ' More than meets the eye
Its Tength is 28

The chopped version is ' More than meets the eye'
Its Tength is 25

The Ttrimmed version is 'More than meets the eye
Its Tength is 26

The trimmed version is 'More than meets the eye'
Its Tength is 23

The original string had three spaces at the end (subject to removal by chop() or trim()) and two
at the beginning (removed by Ttrim() and trim()). We were careful to describe our result as
viewed by a browser because the multiple spaces have apparently been collapsed to one in the out-
put, as browsers will do. If we viewed the HTML source produced by PHP originally, we would still
see sequences of two and three spaces.

123

m Introducing PHP

124

In addition to spaces, these functions remove whitespace like that denoted by the escape sequences
\n, \r, \t, and \0 (end-of-line characters, tabs, and the null character used to terminate strings in
C programs).

You will hear the name chop () more frequently, but the identical function can also be called with
the more logical name of rtrim(). Finally, notice that although chop () sounds extremely destruc-
tive, it does not harm the $original argument, which retains the same value.

String replacement

The substring functions we've seen so far are all about choosing a portion of the argu-
ment rather than building a genuinely new string. Enter the functions str_replace() and
substr_replace().

The str_replace() function enables you to replace all instances of a particular substring with an
alternate string. It takes three arguments: the string to be searched for, the string to replace it with
when it is found, and the string to perform the replacement on. For example:

$first_edition =
"Burma is similar to Rhodesia in at least one way.";

$second_edition = str_replace("Rhodesia", "Zimbabwe",
$first_edition);
$third_edition = str_replace("Burma", "Myanmar",

$second_edition);
print($third_edition);

gives us:
Myanmar is similar to Zimbabwe in at Teast one way.

This replacement will happen for all instances found of the search string. If our outdated encyclope-
dia could be snarfed into a single PHP string, we could update it in one pass.

One subtlety to be aware of: What happens when multiple instances of the search string overlap?
For example, with code like:

$tricky_string = "ABA is part of ABABA";
$maybe_tricked = str_replace("ABA", "DEF", $tricky_string);
print("Substitution result is '$maybe tricked'
");

the behavior we see is:
Substitution result is 'DEF is part of DEFBA'
which is probably as reasonable as any other alternative.

As you've seen, str_replace() picks out portions to replace by matching to a target string; by
contrast, substr_replace() chooses a portion to replace by its absolute position. The function
takes up to four arguments: the string to perform the replacement on, the string to replace it with,

Learning PHP String Handling

the starting position for the replacement, and (optionally) the length of the section to be replaced.
For example:

print(substr_replace("ABCDEFG", "-", 2, 3));

gives us:
AB-FG

The CDE portion of the string has been replaced with the single -. Notice that you are allowed
to replace a substring with a string of a different length. If the length argument is omitted, it is
assumed that you want to replace the entire portion of the string after the start position.

The substr_replace() function also takes negative arguments for starting position and length,
which are treated exactly the same way as in the substr () function (described in the earlier section
“Substring selection”). It is important to remember with both str_replace and substr_replace
that the original string remains unchanged by these operations.

Finally, we have a couple more whimsical functions that produce new strings from old. The
strrev() function simply returns a new string with the characters of its input in reverse order. The
str_repeat () function takes a string argument and an integer argument and returns a string that
is the appropriate number of copies of the string argument tacked together. For example:

print(str_repeat("cheers ", 3));

gives us:

cheers cheers cheers
for the end of this section at long last.

The substring search and replacement functions are summarized in Table 7-2.

TABLE 7-2

Substring and String Replacement Functions

Function Behavior

substr() Returns a subsequence of its initial string argument, as specified by the second (position)
argument and optional third (length) argument. The substring starts at the indicated
position and continues for as many characters as specified by the length argument or until
the end of the string, if there is no length argument.

A negative position argument means that the start character is located by counting backward
from the end, whereas a negative length argument means that the end of the substring is
found by counting back from the end, rather than forward from the start position.

continued

125

BTN roteoducing pree

Substring and String Replacement Functions

Function Behavior

chop(), or Returns its string argument with trailing (right-hand side) whitespace removed. Whitespace

rtrim() is a blank space, \n, \r, \'t, and \0.

Ttrim() Returns its string argument with leading (left-hand side) whitespace removed.

Trim() Returns its string argument with both leading and trailing whitespace removed.

Str_ Used to replace target substrings with another string. Takes three string arguments: a substring

replace() to search for, a string to replace it with, and the containing string. Returns a copy of the
containing string with all instances of the first argument replaced by the second argument.

Substr_ Puts a string argument in place of a position-specified substring. Takes up to four

replace() arguments: the string to operate on, the string to replace with, the start position of the

substring to replace, and the length of the string segment to be replaced. Returns a copy of
the first argument with the replacement string put in place of the specified substring.

If the length argument is omitted, the entire tail of the first string argument is replaced.
Negative position and length arguments are treated as in substr().

Case functions

These functions change lowercase to uppercase and vice versa. The first two (de)capitalize entire
strings, whereas the second two operate only on first letters of words.

strtolower()

The strtolower () function returns an all-lowercase string. It doesn’t matter if the original is all
uppercase or mixed. This fragment:

$original = "They DON'T KnoW they're SHOUTING";
$lower = strtolower($original);
echo $lower;

returns the string "they don't know they're shouting”

If you have been faced with extensive form-validation needs before, you might already
have noticed that strtolower () is extremely handy for use with those that still think

their e-mail addresses contain capital letters. Subsequent functions in this category will prove similarly

useful.

126

Learning PHP String Handling

strtoupper()

The strtoupper () function returns an all-uppercase string, regardless of whether the original was
all lowercase or mixed:

<?php
$original = "make this Tink stand out";
echo("strtoupper($original)");
>

ucfirst()

The ucfirst() function capitalizes only the first letter of a string:

<?php

$original = "polish is a word for which pronunciation depends on
capitalization";

echo(ucfirst($original));

7>

ucwords()
The ucwords () function capitalizes the first letter of each word in a string:

<?php

$original = "truth or consequences";

$capitalized = ucwords($original);

echo "While $original is a parlor game, $capitalized is a town in New
Mexico.";

7>

Neither ucwords () nor ucfirst() converts anything into lowercase. Each makes only
the appropriate leading letters into uppercase. If there are inappropriate capital letters in
the middle of words, they will not be corrected.

Escaping functions

One of the virtues of PHP is that it is willing to talk to almost anybody. In its role as a glue language,
PHP talks to database servers, to LDAP servers, over sockets, and over the HTTP connection itself.
Frequently, it accomplishes this communication by first constructing a message string (like a data-
base query) and then shipping it off to the receiving program. Often, however, the program attaches
special meanings to certain characters, which therefore have to be escaped, meaning that the receiv-
ing program is told to take them as a literal part of the string rather than treating them specially.

Many users deal with this issue by enabling magic-quotes, which ensures that quotation marks
are escaped before strings are inserted into databases. If that's not feasible or desirable, there
are good old-fashioned strip-slashing and add-slashing by hand. The addsTashes () function

127

m Introducing PHP

128

escapes quotation marks, double quotation marks, backslashes, and NULLs with backslashes,
because these are the characters that typically need to be escaped for database queries.

<?php

$escapedstring = addslashes("He said, 'I'm a dog."'");

$query = "INSERT INTO test (quote) values ('$escapedstring')";
$result = mysql_query($query) or die(mysql_error());

?>

This will prevent the SQL statement from thinking it’s finished right before the letter I. When you
pull the data back out, you'll need to use stripslashes() to get rid of the slashes.

<?php

$query = "SELECT quote FROM test WHERE ID=1";
$result = mysql_query($query) or die(mysqgl_error());
$new_row = mysql_fetch_array($result);

$quote = stripslashes($new_row[0]);

echo $quote;

The quotemeta () function escapes a wider variety of characters, all of which usually have a special
meaning in the Unix command line: ". ", "\" "+' "4 2t ot oAt ot '8 Jand)
For example, the code:

$l1iteral_string =

'These characters ($, *) are very special to me\n
';
$gqm_string = quotemeta($literal_string);
echo $gm_string;

will print:
These characters \(\$, *\) are very special to me\\n

| For escaping functions specific to HTML, see the “Advanced String Functions” section in
Chapter 22.

Printing and output

The workhorse constructs for printing and output are print and echo, which we cover in detail in
Chapter 4. The standard way to print the value of variables to output is to include them in a doubly
quoted string (which will interpolate their values) and then give that string to print or echo.

If you need even more tightly formatted output, PHP also offers printf () and sprintf (), which
are modeled on C functions of the same name. The two functions take identical arguments: a special
format string (described later in this section) and then any number of other arguments, which will
be spliced into the right places in the format string to make the result.

The only difference between printf () and sprintf() isthat printf() sends the resulting string
directly to output, whereas sprintf () returns the result string as its value.

Learning PHP String Handling

B To C programmers: This sprintf () function is slightly different from C’s version in that
you need not supply an allocated string for sprintf () to write into — PHP allocates the
result string for you.

The complicated bit about these functions is the format string. Every character that you put in the
string will show up literally in the result, except the % character and characters that immediately
follow it. The % character signals the beginning of a conversion specification, which indicates how to
print one of the arguments that follow the format string.

After the %, there are six elements that make up the conversion specification, some of which are
optional: padding, alignment, minimum width, precision, and type.

B An optional sign character used for numbers to indicate whether the number will be
negative (-).

B The single (optional) padding character is either a 0 or a space (). This character is used to
fill any space that would otherwise be unused but that you have insisted (with the mini-
mum width argument) be filled with something. If this padding character is not given, the
default is to pad with spaces.

m The optional alighment character (-) indicates whether the printed value should be left- or
right-justified. If present, the value will be left-justified; if absent, it will be right-justified.

B An optional minimum width number that indicates how many spaces this value should take
up, at a minimum. (If more spaces are needed to print the value, it will overflow beyond its
bounds.)

B An optional precision specifier is written as a dot (.) followed by a number. It indicates
how many decimal points of precision a double should print with. (This has no effect on
printing things other than doubles.)

B A single character indicating how the type of the value should be interpreted. The f char-
acter indicates printing as a double, the s character indicates printing as a string, and then
the rest of the possible characters (b, c, d, 0, x, X) mean that the value should be inter-
preted as an integer and printed in various formats. Those formats are b for binary, ¢ for
printing the character with the corresponding ASCII values, o for octal, x for hexadecimal
(with lowercase letters) and X for hexadecimal with uppercase letters.

Here’s an example of printing the same double in several different ways:

<pre>
<{?php
$value = 3.14159;
printf("%f,%10f,%-010f,%2.2f\n",

$value, $value, $value, $value);
>
</pre>

gives us:

3.141590, 3.141590,3.141590000000000, 3.14

129

m Introducing PHP

130

The <pre></pre> construct is HTML that tells the browser to format the enclosed block literally,
without collapsing many spaces into one, and so on.

Summary

Strings are sequences of characters, and the string is one of the eight basic data types in PHP. Unlike
in some other languages, there is no distinct character type, since single characters behave as strings
of length 1. Literal strings are specified in code by either single (") or double (") quotation marks.
Singly quoted strings are interpreted nearly literally, while doubly quoted strings interpret a number
of escape sequences and automatically interpolate variable values.

The main string operator is ' . ', which concatenates two strings together. In addition, there is a
dizzying array of string functions, which help you inspect, compare, search, extract, chop, replace,
slice, and dice strings to your heart’s content. For the most sophisticated string-manipulation needs,
PHP supports both POSIX and Perl-compatible regular expressions (covered in Chapter 22).

rrays are definitely one of the coolest and most flexible features of

PHP. Unlike vector arrays from other languages (C, C++, Pascal),

PHP arrays can store data of varied types and automatically orga-
nize it for you in a large variety of ways.

F This chapter treats arrays and array functions in some depth.
=% For a very quick introduction to the syntax and use of arrays,
see Chapter 4. For a more complete survey of advanced array functions, see
Chapter 21.

The Uses of Arrays

An array is a collection of variables indexed and bundled into a single, eas-
ily referenced supervariable that offers an easy way to pass multiple values
between lines of code, functions, and even pages. Throughout much of this
chapter, we will be looking at the inner workings of arrays and exploring
all the built-in PHP functions that manipulate them. Before we get too deep
into that, however, it's worth listing the common ways that arrays are used
in real PHP code.

Many built-in PHP environment variables are in the form of arrays (for
example, $_SESSION, which contains all the variable names and values
being propagated from page to page via PHP’s session mechanism). If you
want access to them, you need to understand, at a minimum, how to refer-
ence arrays.

Almost any situation that calls for a number of pieces of data to be pack-
aged and handled as one is appropriate for a PHP array.

131

IN THIS CHAPTER

An all-purpose data type

Storing and retrieving values

Multidimensional arrays

Iteration

Introducing PHP

What Are PHP Arrays?

PHP arrays are associative arrays with a little extra machinery thrown in. The associative part means
that arrays store element values in association with key values rather than in a strict linear index
order. (If you have seen arrays in other programming languages, they are likely to have been vector
arrays rather than associative arrays — see the related sidebar for an explanation of the difference.)
If you store an element in an array, in association with a key, all you need to retrieve it later from
that array is the key value. For example, storage is as simple as this:

$state_location['San Mateo'] = 'California';

which stores the element 'California' in the array variable $state_location, in association
with the lookup key 'San Mateo'. After this has been stored, you can look up the stored value by
using the key, like so:

$state = $state _location['San Mateo']; // equals 'California'
Simple, no?

If all you want arrays for is to store key/value pairs, the preceding information is all you need to
know. Similarly, if you want to associate a numerical ordering with a bunch of values, all you have to
do is use integers as your key values, as in:

$my_array[1]
$my_arrayl[2]

"The first thing";
"The second thing"; // and so on

For Perl programmers: Arrays in PHP are much like hashes in Perl, with some syntactic
differences. For one thing, all variables in PHP are denoted with a leading $, not just sca-
lar variables. Second, even though the array is associative, the indices are grouped by square brackets
(L) rather than curly braces ({ }). Finally, there is no array or list type indexed only by integers. The
convention is to use integers as associative indices, and the array itself maintains an internal ordering
for iteration purposes.

In addition to the machinery that makes this kind of key/value association possible, arrays track
some other things behind the scenes. Because of this, we sometimes treat them as other kinds of
data structures. As you will see, arrays can be multidimensional. They can store values in associa-
tion with a sequence of key values rather than a single key. Also, arrays automatically maintain an
ordered list of the elements that have been inserted in them, independent of what the key values
happen to be. This makes it possible to treat arrays as linked lists. In general, we will reveal the
workings of this extra machinery as we explore the functions that use it.

A note for C++ programmers: You should be aware that arrays can handle some of the
same tasks that require the use of template libraries in C++. Much of the reason for hav-
ing templates in the first place is to get around restrictions having to do with strict typing of data. PHP’s
looser typing system makes it possible, for example, to write general algorithms that iterate over the
contents of arrays without committing to the type of the array elements themselves.

132

Learning Arrays _

Associative Arrays versus Vector Arrays

f you have programmed in languages like C, C++, and Pascal, you are probably used to a particular usage
of the word array, one that doesn’t match the PHP usage very well at all. A more specific term for a C-style
array is a vector array, whereas a PHP-style array is an associative array.

In a vector array, the contained elements all need to be of the same type, and usually the language compiler
needs to know in advance how many such elements there are likely to be. For example, In C you might declare
an array of 100 double-precision floating-point numbers with a statement like:

double my_array[100]; // This is C, not PHP!

The restriction on types and the advance declaration of size have an associated benefit: Vector arrays are very
fast, both for storage and lookup. The reason is that the compiler will usually lay out the array in a contiguous
block of computer memory, as large as the size of the element type multiplied by the number of elements.
This makes it very easy for the programming language to locate a particular array slot — all it needs to know
is the starting memory address of the array, the size of the element type, and the index of the element it wants
to look up, and it can directly compute the memory address of that slot.

By contrast, PHP arrays are associative (and so some would call them hashes, rather than arrays). Rather than
having a fixed number of slots, PHP creates array slots as new elements that are added to the array. Rather
than requiring elements to be of the same type, PHP arrays have the same type-looseness that PHP variables
have — you can assign arbitrary PHP values to be array elements. Finally, because vector arrays are all about
laying out their elements in numerical order; the keys used for lookup and storage must be integer numbers.
PHP arrays can have keys of arbitrary type, instead, including string keys. So, you could have successive array
assignments like:

$my_array[1l] = 1;
$my_array['orange'] = 2;
$my_array[3] = 3;

without any paradox. The result is that your array has three values (1, 2, 3), each of which is stored in associa-
tion with a key (1, "orange', and 3, respectively).

The extra flexibility of associative arrays comes at a price, because there is a little bit more going on between
your code and the actual computation of a memory address than is true with vector arrays. For most web
programming purposes, however, this extra access time is not a significant cost.

The fact that integers are legal keys for PHP arrays means that you can easily imitate the behavior of a vector
array, simply by restricting your code to use only integers as keys.

e A general note for programmers familiar with other languages: PHP does not need very
; i many different kinds of data structures, in part because of the great flexibility offered by
PHP arrays. By careful choice of a subset of array functions, you can make arrays pretend to act like
vector arrays, structure/record types, linked lists, hash tables, or stacks and queues — data structures
that in other languages either require their own data types or less common language features such as
pointers and explicit memory management.

133

m Introducing PHP

134

Creating Arrays

There are three main ways to create an array in a PHP script: by assigning a value into one (and
thereby implicitly creating it), by using the array () construct, and by calling a function that hap-
pens to return an array as its value.

Direct assignment

The simplest way to create an array is to act as though a variable is already an array and assign a
value into it, like this:

$my_array[1] = "The first thing in my array that I just made";

If $my_array was an unbound variable (or bound to a nonarray variable) before this statement, it
will now be a variable bound to an array with one element. If instead $my_array was already an
array, the string will be stored in association with the integer key 1. If no value was associated with
that number before, a new array slot will be created to hold it; if a value was associated with 1, the
previous value will be overwritten. (You can also assign into an array by omitting the index entirely
asin $my_array[], described later in this chapter.)

The array() construct

The other way to create an array is via the array () construct, which creates a new array from the
specification of its elements and associated keys. In its simplest version, array () is called with no
arguments, which creates a new empty array. In its next simplest version, array () takes a comma-
separated list of elements to be stored, without any specification of keys. The result is that the ele-
ments are stored in the array in the order specified and are assigned integer keys beginning with
zero. For example, the statement:

$fruit_basket = array('apple', 'orange', 'banana', 'pear');

causes the variable $fruit_basket to be assigned to an array with four string elements ('apple’,
'banana', 'orange', 'pear"'), with the indices 0, 1, 2, and 3, respectively. In addition (as you'll
see in the “Iteration” section later in this chapter), the array will remember the order in which the
elements were stored.

The assignment to $fruit_basket, then, has exactly the same effect as the following:

$fruit_basket[0] = 'apple';

$fruit_basket[1] = 'orange';
$fruit_basket[2] = 'banana';
$fruit_basket[3] = 'pear';

assuming that the $fruit_basket variable was unbound at the first assignment. The same effect
could also have been accomplished by omitting the indices in the assignment, like so:

$fruit_basket[] = 'apple';
$fruit_basket[] 'orange';

Learning Arrays

$fruit_basket[] = 'banana';
$fruit_basket[] 'pear’';

In this case, PHP again assumes that you are adding sequential elements that should have numerical
indices counting upward from zero.

Yes, the default numbering for array indices starts at zero, not one. This is the conven-
tion for arrays in most programming languages. We’re not sure why computer scientists
start counting at zero (mathematicians, like everyone else in the world, start with one), but it prob-
ably has its origin in the kind of pointer arithmetic that calculates memory addresses for vector arrays.
Addresses for successive elements of such arrays are found by adding successively larger offsets to the
array’s address, but the offset for the first element is zero (because the first element’s address is the
same as the array’s address).

Specifying indices using array()

The simple example of array () in the preceding section assigns indices to our elements, but those
indices will be the integers, counting upward from zero — we're not getting a lot of choice in the
matter. As it turns out, array () offers us a special syntax for specifying what the indices should be.
Instead of element values separated by commas, you supply key/value pairs separated by commas,
where the key and value are separated by the special symbol =>.

Consider the following statement:

$fruit_basket = array(0 => 'apple', 1 => 'orange',
2 => 'banana', 3 => 'pear');

Evaluating it will have exactly the same effect as our earlier version — each string will be stored in
the array in succession, with the indices 0, 1, 2, 3 in order. Instead, however, we can use exactly the
same syntax to store these elements with different indices:

$fruit_basket = array('red' => 'apple', 'orange' => 'orange',
'yellow' => 'banana', 'green' => 'pear');

This gives us the same four elements, added to our new array in the same order, but indexed by
color names rather than numbers. To recover the name of the yellow fruit, for example, we just
evaluate the expression:

$fruit_basket['yellow'] // will be equal to 'banana'

Finally, as we said earlier, you can create an empty array by calling the array function with no
arguments. For example:

$my_empty_array = array();

creates an array with no elements. This can be handy for passing to a function that expects an array
as argument.

135

m Introducing PHP

136

Functions returning arrays

The final way to create an array in a script is to call a function that returns an array. This may be a user-
defined function, or it may be a built-in function that makes an array via methods internal to PHP.

Many database-interaction functions, for example, return their results in arrays that the functions
create on the fly. Other functions exist simply to create arrays that are handy to have as grist for later
array-manipulating functions. One such is range(), which takes two integers as arguments and
returns an array filled with all the integers (inclusive) between the arguments. In other words:

$my_array = range(1l,5);
is equivalent to:

$my_array = array(l, 2, 3, 4, 5);

Retrieving Values

After we have stored some values in an array, how do we get them out again?

Retrieving by index
The most direct way to retrieve a value is to use its index. If we have stored a value in $my_array at
index 5, $my_array[5] should evaluate to the stored value. If $my_array has never been assigned,

or if nothing has been stored in it with an index of 5, $my_array[5] will behave like an unbound
variable.

The list() construct

There are a number of other ways to recover values from arrays without using keys, most of which
exploit the fact that arrays are silently recording the order in which elements are stored. We cover
this in more detail in this chapter’s “Iteration” section, but one such example is 11st (), which is
used to assign several array elements to variables in succession. Suppose that the following two
statements are executed:

$fruit_basket = array('apple', 'orange', 'banana');
list($red_fruit, $orange_fruit) = $fruit_basket;

This will assign the string "apple’ to the variable $red_fruit and the string 'orange' to the
variable $orange_fruit (with no assignment of 'banana’', because we didn’t supply enough
variables). The variables in 11st () will be assigned to elements of the array in the order they were
originally stored in the array. Notice the unusual behavior here — the 1ist () construct is on the
left-hand side of the assignment operator (=), where we normally find only variables.

Learning Arrays _

In some sense, 115t () is the opposite or inverse of array () because array () packages its argu-
ments into an array, and 11st () takes the array apart again into individual variable assignments. If
we evaluate:

Tist($first, $second) = array($first, second);

the original values of $first and $second will be assigned to those variables again, after having
been briefly stored in an array.

We have been careful to refer to both array () and 1ist () as constructs, rather than
functions. This is because they are not in fact functions — like certain other specialized
PHP language features (i f, while, function, and so on) they are interpreted specially by the lan-
guage itself and are not run through the usual routine of function-call interpretation. Remember that
the arguments to a function call are evaluated before the function is really invoked on those arguments,
so constructs that need to do other kinds of interpretation on what they are given cannot be imple-
mented as function calls. It’s a useful exercise to look hard at the example uses of both array () and
1ist() to figure out why treating them as function calls could not result in the behavior advertised.

Multidimensional Arrays

So far, the array examples we have looked at have all been one-dimensional, with only one level

of bracketed keys. However, PHP can easily support multidimensional arrays, with arbitrary num-
bers of keys. And just as with one-dimensional arrays, there is no need to declare our intentions in
advance — the first reference to an array variable can be an assignment like:

$multi_array[1][2][3][4]1[5] = "deeply buried treasure";

That is a five-dimensional array with successive keys that happen, in this case, to be five successive
integers.

Actually, in our opinion, thinking of arrays as multidimensional makes matters more confusing
than they need to be. Instead, just remember that the values that are stored in arrays can themselves
be arrays, just as legitimately as they can be strings or numbers. The multiple-index syntax in the
preceding example is simply a concise way to refer to a (four-dimensional) array that is stored with
akeyof 1in $multi_array, which in turn has a (three-dimensional) array stored in it, and so on.
Note also that you can have different depths of reference in different parts of the array, like this:

$multi_Tevel_array[0] = "a simple string";
$multi_Tevel_array[1]['contains'] = "a string stored deeper"”;

The integer key of 0 stores a string, and the key of 1 stores an array that, in turn, has a string in it.
However, you cannot continue on with this assignment:

$multi_Tevel _array[0]['contains'] = "another deep string";

without the result of losing the first assignment to 'a simple string'. The key of 0 can be used to
store a string or another array, but not both at once.

137

Introducing PHP

If we remember that multidimensional arrays are simply arrays that have other arrays stored in
them, it’s easier to see how the array () creation construct generalizes. In fact, even this seemingly
complicated assignment is not that complicated:

$cornucopia = array('fruit' =>

array('red' => 'apple',
'orange' => 'orange',
'yellow"' => 'banana',
'green' => 'pear'),

"flower' =>

array('red' => 'rose',
'yellow"' => "sunflower',
"purple' => 'iris'));

It is simply an array with two values stored in association with keys. Each of these values is an array
itself. After we have made the array, we can reference it like this:

$kind_wanted = 'flower';

$color_wanted = 'purple';

print("The $color_wanted $kind_wanted is
$cornucopial$kind_wanted][$color_wanted]);

See the browser output:
The purple flower is iris

There’s a reason that we used the string concatenation operator, ., in the preceding
print statement, rather than simply embedding the $cornucopial$kind_wanted]
[$color_wanted] in our print string as we do with other variables. PHP3 string parsing can be
confused by multiple array indices within a double-quoted string, so it needs to be concatenated sepa-
rately. PHP since version 4 handles this in a better way — you are safe embedding array references in a
string as long as you enclose the reference in curly braces, like this:

print("The thing we want is
{$cornucopial$kind_wanted][$color_wanted]}");

Finally, notice that there is no great penalty for misindexing into a multidimensional array when we
are trying to retrieve something; if no such key is found, the expression is treated like an unbound
variable. So, if we try the following instead:

$kind_wanted = 'fruit';
$color_wanted = 'purple'; //uh-oh, we didn't store any plums

print("The $color_wanted $kind_wanted is "
$cornucopial$kind_wanted][$color_wanted]);

The worst that happens is the unsatisfying:

The purple fruit is

138

Learning Arrays _

This is the worst thing that happens, of course, unless you have raised your error_reporting level
to E_ALL, as we advise you to do at some points in this book. In that case, you will get a notice mes-
sage about an undefined index ('purple") just as you would if you had an unbound variable.

Inspecting Arrays

Now we can make arrays, store values in arrays, and then pull the values out again when we want
them. Table 8-1 summarizes a few other functions we can use to ask questions of our arrays.

TABLE 8-1

Simple Functions for Inspecting Arrays

Function Behavior

is_array() Takes a single argument of any type and returns a true value if the argument
is an array, and false otherwise.

count() Takes an array as argument and returns the number of nonempty elements
in the array. (This will be 1 for strings and numbers.)

sizeof () Identical to count ().

in_array() Takes two arguments: an element (that might be a value in an array), and
an array (that might contain the element). Returns true if the element is
contained as a value in the array, false otherwise. (Note that this does not
test for the presence of keys in the array.)

isset($arrayl[$keyl) Takes an arrayl key] form and returns true if the key portion is a
valid key for the array. (This is a specific use of the more general function
isset (), which tests whether a variable is bound.)

Note that all of these functions work on only the depth of the array specified, so that testing for val-
ues layers deep in a multidimensional array requires that you specify out that number of places. In
the case of our preceding $cornucopia example, for instance:

count($cornucopia); // what do you expect here? 27 77 97
returns a 2, while
count($cornucopialfruit]);

returns 4.

139

m Introducing PHP

140

Deleting from Arrays

Deleting an element from an array is simple, exactly analogous to getting rid of an assigned variable.
Just call unset (), as in the following:

$my_array[0] = 'wanted';
$my_array[1] = 'unwanted';
$my_array[2] = 'wanted again';
unset($my_array[11);

Assuming that $my_array was unbound when we started, at the end it has two values ('wanted",
'wanted again'), in association with two keys (0 and 2, respectively). It is as though we had
skipped the original 'unwanted' assignment (except that the keys are numbered differently).

Note that this is not the same as setting the contents to an empty value. If, instead of calling
unset (), we had the following statement:

$my_arrayl[l] = ;

at the end we would have three stored values ('wanted', '', 'wanted again') in association with

three keys (0, 1, and 2, respectively).

Iteration

We've seen how to put things into arrays, how to find them once we have put them there, and how
to delete them when we don’t want them anymore. What we need next is a technique for dealing
with array elements in bulk. Iteration constructs help us do this by letting us step or loop through
arrays, element by element or key by key.

We'll first delve briefly into the internal representation of arrays to understand how PHP supports
iteration. (Although important, this subsection is skippable — if you want to use it but don’t want to
know how it works, you can jump down to the section titled “Using iteration functions.”)

Support for iteration

In addition to storing values in association with their keys, PHP arrays silently build an ordered
list of the key/value pairs that are stored, in the order that they are stored. The reason for this is to
support operations that iterate over the entire contents of an array. (Notice that this is difficult to
do simply by building a loop that increments an index, because array indices are not necessarily
numerical.)

There is, in fact, sort of a hidden pointer system built into arrays. Each stored key/value pair points
to the next one, and one side effect of adding the first element to an array is that a current pointer
points to the very first element, where it will stay unless disturbed by one of the iteration functions.

Learning Arrays _

Each array remembers a particular stored key/value pair as being the current one, and

- array iteration functions work in part by shifting that current marker through the internal
list of keys and values. Although we will call this marker the current pointer, PHP does not support full
pointers in the sense that C and C++ programmers may be used to, and this usage of the word will turn
up only in the context of iterating through arrays.

This linked-list pointer system is an alternative way to inspect and manipulate arrays, which exists
alongside the system that allows key-based lookup and storage. Figure 8-1 shows an abstract view
(not necessarily reflecting the real implementation) of how these systems locate elements in an array.

FIGURE 8-1

Internal structure of an array

________ | Linked list
Hashing Index Value : structure
|OOkUp 4—:— current
/ |
Index Value ;

Index Value

|

Y |

|

J |

Index Value)

1

\ |

|
Index-based [teration
functions functions

Using iteration functions

To explore the iteration functions, let’s construct a sample array that we can iterate over.

$major_city_info = array();
$major_city_info[0] = 'Chicago';

141

m Introducing PHP

142

$major_city_info['Chicago'] = 'United States';
$major_city_info[l] = 'Stockholm';
$major_city_infol'Stockholm'] = 'Sweden';
$major_city _info[2] = 'Montreal';
$major_city_info['Montreal'] = 'Canada';

In this example, we created an array and stored some names of cities in it, in association with
numerical indices. We also stored the names of the relevant countries into the array, indexed by the
city names. (We could have accomplished all this with one big call to array (), but the separate
statements make the structure of the array somewhat clearer.)

Now, we can use the array key system to pull out the data we have stored. If we want to rely on the
convention in the preceding example (cities stored with numerical indices, countries stored with
city-name indices), we can write a function that prints the city and the associated country, like this:

function city_by_number ($number_index, $city_array)
{
if (IsSet($city_arrayl[$number_index]))
{
$the_city = $city_array[$number_index];
$the_country = $city_arrayl[$the_cityl;
print("$the_city is in $the_country
");
}
1
city_by_number(0, $major_city_info);
city_by_number(l, $major_city_info);
city_by_number(2, $major_city_info);

If we have set $major_city, as in the previous block of code, the browser output we should expect is:

Chicago is in United States
Stockholm is in Sweden
Montreal is in Canada

Now, this method of retrieval is fine when we know how the array is structured and we know what
all the keys are, but what if you would simply like to print everything that an array contains?

Our favorite iteration method: foreach

Our favorite construct for looping through an array is foreach. Although it is probably inherited
from Perl’s foreach, it has a somewhat odd syntax (which is not the same as Perl’s odd syntax). It
comes in two flavors — which one you decide to use will depend on whether you care about the
array’s keys or just the values.

foreach ($array_variable as $value_variable) {
// .. do something with the value in $value_variable
}// Note that this is an example template, not real PHP code

Learning Arrays _

foreach ($array_variable as $key_var => $value_var) ({
// .. do something with $key_var and/or $value_var
}

Although in the preceding pseudocode we assume that the array of interest is in the variable
$array_variable, you can have any expression that evaluates to an array in that position, for
example:

foreach (function_returning_array() as $value_variable) {
// .. do something with the value in $value_variable

Like array () and 1ist (), but unlike the genuine iteration functions in the rest of this
. section, foreach is a language construct, not a function. (See the earlier note about
1ist () for an explanation of the difference.)

As an example, let’s write a function to print all the names from our sample array:

function print_all_foreach ($city_array)
{
foreach ($city_array as $name_value) {
print("$name_value
");
1
}
print_all_foreach($major_city_info);
print_all_foreach($major_city_info);// again, as an experiment

As output, we get all the names, in the order we stored them, twice over:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

We printed the contents twice to show that calling the function is repeatable.

Iterating with current() and next()

We like foreach, but it is really only good for situations where you want to simply loop through an
array’s values. For more control, let’s look at current () and next().

143

Introducing PHP

The current () function returns the stored value that the current pointer points to. (Refer back to
Figure 8-1 for a diagram of the array internals.) When an array is newly created with elements, the
element pointed to will always be the first element. The next () function first advances that pointer
and then returns the current value pointed to. If the next () function is called when the current
pointer is already pointing to the last stored value and, therefore, runs off the end of the array, the
function returns a false value.

As an example, we can print out an array’s contents with the iteration functions current () and
next (). (Notice that the final function call is repeated.)

function print_all_next($city_array)
{ // warning--doesn't quite work. See the function each()
$current_item = current($city_array);
if ($current_item)
print("$current_item
");
else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
1
print_all_next($major_city_info);
print_all_next($major_city_info);// again, to see what happens

There is a gotcha lurking in the preceding code example, which doesn’t bite us in this
particular example but makes this function untrustworthy as a general method for find-
ing everything in an array. The problem is that we may have stored a false value in the array, which our
whiTe loop won’t be able to distinguish from the false value that next () returns when it has run out
of array elements. See the discussion of the each () function later in this chapter under “Empty values
and the each () function” for a solution.

When we execute this array-printing code, we get the following again:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

Now, how is it that we are seeing the same thing from the second call to print_all_next()? How
did the current pointer get back to the beginning to start all over again the second time? The answer

144

Learning Arrays _

lies in the fact that PHP function calls are call-by-value, meaning that they copy their arguments
rather than operating directly on them. Both of the function calls, then, are getting a fresh copy of
their array argument, which has never itself been disturbed by a call to next ().

For more on under what circumstances functions copy their arguments rather than oper-
ating on them directly, see Chapter 5.

We can test this explanation by passing the arrays by reference rather than by value. If we define the
same function but call it with ampersands (&) like this:

print_all_next(&$major_city_info);
print_all_next(&$major_city _info);// again

We get the following printing behavior:

Chicago

United States

Stockholm

Sweden

Montreal

Canada

There's nothing to print

The trick we used to test the array behavior (passing a variable reference to a function)
' has been deprecated, so you may get a warning when running this code, in addition to
seeing the results printed above.

The reason is that this time the current pointer of the global version of the array was moved by the
first function call.

Most of the iteration functions have both a returned value and a side effect. In the case

WSS of the functions next (), prev(), reset(), and end (), the side effect is to change the
position of the internal pointer, and what is returned is the value from the key/value pair pointed to
after the pointer’s position is changed.

Starting over with reset()

In the preceding section, we wrote a function intended to print out all the values in an array, and we
saw how it could fail if the array’s internal pointer did not start off at the beginning of the list of key/
value pairs. The reset () function gives us a way to “rewind” that pointer to the beginning — it sets
the pointer to the first key/value pair and then returns the stored value. We can use it to make our
printing function more robust by replacing the call to current () with a call to reset ().

function print_all_array_reset($city_array)

{ // warning--still not reliable. See the function each()
$current_item = reset($city_array); //rewind, return value
if ($current_item)

print("$current_item
");

145

m Introducing PHP

146

else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
}

This function is somewhat more predictable in that it will always start with the first element,
regardless of the pointer’s location in the array it is handed. (Whether this is a good idea depends,
of course, on what the function is used for and whether its arguments are passed by value or by
reference.)

Perhaps confusingly, we use our call to reset () in the preceding example both for its side effect
(rewinding the pointer) and for its return value (the first value stored). Alternatively, we could
replace the first real line of the function body with these two lines:

reset($city_array); // rewind to the first element
$current_item = current($city_array); // the first value

Reverse order with end() and prev()

We have seen the functions next (), which moves the current pointer ahead by one, and reset (),
which rewinds the pointer to the beginning. Analogously, there are also the functions prev (),
which moves the pointer back by one, and end (), which jumps the pointer to the last entry in the
list. We can use these, for example, to print our array entries in reverse order.

function print_all_array_backwards($city_array)

{ // warning--still not reliable. See the function each()
$current_item = end($city_array); //fast-forward to last
if ($current_item)

print("$current_item
");
else
print("There's nothing to print");
while($current_item = prev($city_array))
print("$current_item
");
}
print_all_array_backwards($major_city_info);

1f we call this on the same $major_city_info data as in previous examples, we get the same print-
out in reverse order:

Canada
Montreal
Sweden
Stockholm
United States
Chicago

Learning Arrays

Extracting keys with key()

So far, we have printed only the values stored in arrays, even though we are storing keys as well. The
keys are also retrievable from the internal linked list of an array by using the key () function — this
acts just like current () except that it returns the key of a key/value pair, rather than the value. (Refer
to Figure 8-1.) Using the key () function, we can modify one of our earlier printing functions to print
keys as well as values.

function print_keys_and_values($city_array)
{ // warning--See the discussion of each() below
reset($city_array);
$current_value = current($city_array);
$current_key = key($city_array);
if ($current_value)
print("Key: $current_key; Value: $current_value
");
else
print("There's nothing to print");
while($current_value = next($city_array))
{
$current_key = key($city_ array);
print("Key: $current_key; Value: $current_value
");
}
}
print_keys_and_values($major_city_info);

With the same data as before, this gives us the browser output:

Key: 0; Value: Chicago

Key: Chicago; Value: United States
Key: 1; Value: Stockholm

Key: Stockholm; Value: Sweden

Key: 2; Value: Montreal

Key: Montreal; Value: Canada

Empty values and the each() function

We have written several functions that print the contents of arrays by iterating through them and,
as we have pointed out, all but the foreach version have the same weakness. Each one of them
tests for completion by seeing whether next () returns a false value. This will reliably happen
when the array runs out of values, but it will also happen if and when we encounter a false value
that we have actually stored. False values include the empty string (""), the number 0, and the
Boolean value FALSE, any or all of which we might reasonably store as a data value for some task
or other.

To the rescue comes each (), which is somewhat similar to next () but has the virtue of return-
ing false only after it has run out of array to traverse. Oddly enough, if it has not run out, each ()
returns an array itself, which holds both keys and values for the key/value pair it is pointing at. This

147

Introducing PHP

148

characteristic makes each () confusing to talk about because you need to keep two arrays straight:
the array that you are traversing and the array that each () returns every time that it is called. The
array that each () returns has the following four key/value pairs:

Key: 0; Value: current-key

Key: 1; Value: current-value

Key: 'key"'; Value: current-key

Key: 'value'; Value: current-value

The current-key and current-value are the key and value from the array being traversed. In other
words, the returned array packages up the current key/value pair from the traversed array and offers
both numerical and string indices to specify whether you are interested in the key or the value.

In addition to having a different type of return value, each () differs from next () in
- that each () returns the value that was pointed to before moving the current pointer
ahead, whereas next () returns the value after the pointer is moved. This means that if you start with
a current pointer pointing to the first element of an array, successive calls to each () will cover each

array cell, whereas successive calls to next () will skip the first value.

We can use each () to write a more robust version of a function to print all keys and values in
an array:

function print_keys_and_values_each($city_array)
{ // reliably prints everything in array
reset($city_array);
while ($array_cell = each($city_array))
{
$current_value = $array_cell['value'];
$current_key = $array_cell['key'];
print("Key: $current_key; Value: $current_value
");
1
}
print_keys_and_values_each($major_city_info);

Applying this function to our standard sample array gives the following browser output:

Key: 0; Value: Chicago

Key: Chicago; Value: United States
Key: 1; Value: Stockholm

Key: Stockholm; Value: Sweden

Key: 2; Value: Montreal

Key: Montreal; Value: Canada

Learning Arrays

This is exactly the same as was produced by our earlier function print_keys_and_values(). The
difference is that our new function will not stop prematurely if one of the values is false or empty.

Walking with array_walk()

Our last iteration function lets you pass an arbitrary function of your own design over an array,
doing whatever your function pleases with each key/value pair. The array_walk() function takes
two arguments: an array to be traversed and the name of a function to apply to each key/value pair.
(It also takes an optional third argument, discussed later in this section.)

The function that is passed in to array_walk() should take two (or three) arguments. The first
argument will be the value of the array cell that is visited, and the second argument will be the
key of that cell. For example, here is a function that prints a descriptive statement about the string
length of an array value:

function print_value_length($array_value, $array_key_ignored)
{

$the_length = strlen($array_value);

print("The Tength of $array_value is $the_length
");
}

(Notice that this function intentionally does nothing with the second argument.) Now let’s pass this
function over our standard sample array using array_walk():

array_walk($major_city_info, 'print_value_length');

which gives the browser output:

The Tength of Chicago is 7

The Tength of United States is 13
The Tength of Stockholm is 9

The Tength of Sweden is 6

The Tength of Montreal is 8

The Tength of Canada is 6

The final flexibility that array_walk() offers is accepting an optional third argument that, if pres-
ent, will be passed on, in turn, as a third argument to the function that is applied. This argument
will be the same throughout the array’s traversal, but it offers an extra source of runtime control for
the passed function’s behavior.

! You should not alter an array while you are iterating through the array using array_
walk(). There is no guarantee how array_walk() will behave if you do this.

Table 8-2 shows a summary of the behavior of the array iteration functions that we covered in this
section. Notice that foreach and 11 st are not included; they are not functions.

149

m Introducing PHP

Functions for Iterating over arrays

Function Arguments Side Effect Return Value
current() One array argument None. The value from the key/value
pair currently pointed to by the
internal “current” pointer (or
false if no such value).
next() One array argument Advances the pointer by The value pointed to after the
one. If already at the last pointer has been advanced (or
element, it will move the false if no such value).
pointer “past the end,”
and subsequent calls to
current () will return
false.
prev() One array argument Moves the pointer back The value pointed to after the
by one. If already at the pointer has been moved back
first element, will move (or false if no such value).
the pointer “before the
beginning.”
reset() One array argument Moves the pointer back The first value stored in the
to point to the first key/ array, or false for an empty
value pair, or “before the array.
beginning” if the array is
empty.
end() One array argument Moves the pointer ahead The last value that is currently
to the last key/value pair. in the list of key/value pairs.
pos () One array argument None. (This function is an The value of the key/value pair
alias for current().) that is currently pointed to.
each() One array argument Moves the pointer ahead An array that packages the

to the next key/value pair.

keys and values of the key/
value pair that was current
before the pointer was moved
(or false if no such pair). The
returned array stores the key
and value under its own keys
0 and 1, respectively, and also
under its own keys 'key' and
‘value'.

150

Learning Arrays _

Function Arguments Side Effect Return Value
array_ 1) An array This function invokes (Returns 1.)
walk() argument, 2) the the function named by

name of a two- (or its second argument on

three-) argument each key/value pair. Side

function to call on effects depend on the

each key/value, and side effects of the passed

3) an optional third function.

argument.

Summary

The array is a basic PHP data type and plays the role of both record types and vector array types in
other languages. PHP arrays are associative, meaning that they store their values in association with
unique keys or indices. Indices can be either strings or numbers, and are denoted as indices by square
brackets. (The expression $my_array[4] refers to the value stored in $my_array in association
with the integer index 4, and not necessarily to the 4th element of $my_array.)

The loose typing of PHP means that any PHP value can be stored as an array. In turn, this means
that arrays can be stored as array elements. Multidimensional arrays are simply arrays that contain
other arrays as elements, with a reference syntax of successive brackets. (The expression $my_
array[3][4] refers to the element (indexed by 4) of an array that is an element [indexed by 3] of
$my_array.)

The array is the standard vehicle for PHP functions that return structured data, so PHP program-
mers should learn to unpack arrays, even if they are not interested in constructing them. PHP also
offers a huge variety of functions for manipulating data after you have it stored in an array, including
functions for counting, summarizing, and sorting.

151

f you need to do serious numerical, scientific, or statistical computa-

tion, a web-scripting language is probably not where you want to be

doing it. With that said, however, PHP does offer a generous array of
functions that nicely cover most of the mathematical tasks that arise in web
scripting. It also offers some more advanced capabilities such as arbitrary-
precision arithmetic and access to hashing and cryptographic libraries.

The PHP designers have, quite sensibly, not tried to reinvent any wheels

in this department. Instead, they found about 18 perfectly good wheels by
the side of the road and built a lightweight fiberglass chassis to connect
them all together. Many of the more basic math functions in PHP are simple
wrappers around their C counterparts (for more on this, see the sidebar “A
Glimpse behind the Curtain” in Chapter 27, which will cover PHP’s math-
ematics capabilities in greater detail).

Numerical Types

PHP has only two numerical types: integer (also known as long), and double
(aka float), which correspond to the largest numerical types in the C lan-
guage. PHP does automatic conversion of numerical types, so they can be
freely intermixed in numerical expressions, and the “right thing” will typi-
cally happen. PHP also converts strings to numbers where necessary.

153

IN THIS CHAPTER

Numerical types

Mathematical operators

Simple math functions

Random numbers

m Introducing PHP

TABLE 9-1

In situations where you want a value to be interpreted as a particular numerical type, you can force a
typecast by prepending the type in parentheses, such as:

(double) $my_var
(integer) $my_var

Or you can use the functions intval () and doubleval (), which convert their arguments to inte-
gers and doubles, respectively.

Pt O Tl p) = =r For more details on the integer and double types, see Chapter 4.
HAOSSER ¢ ” b

LI

Mathematical Operators

Most of the mathematical action in PHP is in the form of built-in functions rather than in the form
of operators. In addition to the comparison operators covered in Chapter 5, PHP offers five opera-
tors for simple arithmetic, as well as some shorthand operators that make incrementing and assigning
statements more concise.

Arithmetic operators

The five basic arithmetic operators are those you would find on a four-function calculator, plus the
modulus operator (%). (If you are unfamiliar with modulus, see the discussion following Table 9-1.)
The operators are summarized in Table 9-1.

Arithmetic Operators

Operator Behavior Examples

+ Sum of its two arguments. 4+ 9.5 evaluates to 13.5

- If there are two arguments, the right- 50 - 75 evaluates to -25
hand argument is subtracted from the - 3.9 evaluatesto -3.9

left-hand argument. If there is just a
right-hand argument, then the negative
of that argument is returned.

* Product of its two arguments. 3.14 * 2 evaluates to 6. 28
/ Floating-point division of the left-hand 5/ 2 evaluatesto 2.5
argument by the right-hand argument.
% Integer remainder from division of left- 101 % 50 evaluates to 1
hand argument by the absolute value of 999 % 3 evaluates to 0
the right-hand argument. (See discussion 43 % 94 evaluates to 43
in the following section.) -12 % 10 evaluates to -2

-12 % -10 evaluates to -2

154

Learning PHP Number Handling _

Arithmetic operators and types

With the first three arithmetic operators (+, -, *), you should expect type contagion from doubles to
integers; that is, if both arguments are integers, the result will be an integer, but if either argument is
a double, then the result will be a double. With the division operator, there is the same sort of conta-
gion, and in addition the result will be a double if the division is not even.

| If you want integer division rather than floating-point division, simply coerce or convert
the division result to an integer. For example, intval(5 / 2) evaluates to the integer 2.

Modular arithmetic is sometimes taught in school as clock arithmetic. The process of taking one num-
ber modulo to another amounts to “wrapping” the first number around the second, or (equivalently)
taking the remainder of the first number after dividing by the second. The result of such an opera-
tion is always less than the second number.

Roughly speaking, a conventional civilian analog clock displays hours elapsed modulo 12, while
military time is modulo 24. (The roughly in the previous sentence is because the real modulus
function converts numbers to the range O to n-1, rather than the range 1 to n. If bell-tower clocks
respected this, noontime would be marked by silence, rather than by 12 chimes.)

The modulus operator in PHP (%) expects integer arguments — if it is given doubles, they will sim-
ply be converted to integers (by truncation) first. The result is always an integer.

Most programming languages have some form of the modulus operator, but they differ in how they
handle negative arguments. In some languages, the result of the operator is always positive, and -2
% 26 equals 24. In PHP, though, -2 % 26 is -2, and, in general, the statement $mod = $first_num %
$second_num is exactly equivalent to the expression:

if ($first_num >= 0)
$mod = $first_num % abs($second_num);
else
$mod = - (abs($first_num) % abs($second_num));

where abs () is the absolute value function.

Incrementing operators

PHP inherits a lot of its syntax from C, and C programmers are famously proud of their own con-
ciseness. The incrementing/decrementing operators taken from C make it possible to more concisely
represent statements like $count = $count + 1, which tend to be typed frequently.

The increment operator (++) adds one to the variable it is attached to, and the decrement operator
(--) subtracts one from the variable. Each one comes in two flavors, postincrement (which is placed
immediately after the affected variable), and preincrement (which comes immediately before). Both
flavors have the same side effect of changing the variable’s value, but they have different values as
expressions. The postincrement operator acts as if it changes the variable’s value after the expres-
sion’s value is returned, whereas the preincrement operator acts as though it makes the change

155

m Introducing PHP

first and then returns the variable’s new value. You can see the difference by using the operators in
assignment statements, like this:

$count = 0;

$result = $count++;

print("Post ++: count is $count, result is $result
");
$count = 0;

$result = ++$count;

print("Pre ++: count is $count, result is $result
");

$count = 0;

$result = $count--;

print("Post --: count is $count, result is $result
");
$count = 0;

$result = --$count;

print("Pre --: count is $count, result is $result
");

which gives the browser output:

Post ++: count is 1, result is O
Pre ++: count is 1, result is 1

Post --: count is -1, result is 0
Pre --: count is -1, result is -1

In this example, the statement $result = $count++; is exactly equivalent to:

$result = $count;
$count = $count + 1;

while $result = ++$count; is equivalent to:

$count = $count + 1;
$result = $count;

Assignment operators

Incrementing operators like ++ save keystrokes when adding one to a variable, but they don’t help
when adding another number or performing another kind of arithmetic. Luckily, all five arithmetic
operators have corresponding assignment operators (+=, -=, *=, /= and %=) that assign to a variable
the result of an arithmetic operation on that variable in one fell swoop. The statement:

$count = $count * 3;

can be shortened to:

$count *= 3;

156

Learning PHP Number Handling _

and the statement:
$count = $count + 17;
becomes:

$count += 17;

Comparison operators

PHP includes the standard arithmetic comparison operators, which take simple values (numbers or
strings) as arguments and evaluate to either TRUE or FALSE:

For examples of using the comparison operators and also some gotcha issues with com-
paring doubles and strings, see Chapter 5.

B The < (less than) operator is true if its left-hand argument is strictly less than its right-hand
argument but false otherwise.

B The > (greater than) operator is true if its left-hand argument is strictly greater than its
right-hand argument but false otherwise.

B The <= (less than or equal) operator is true if its left-hand argument is less than or equal to
its right-hand argument but false otherwise.

B The >= (greater than or equal) operator is true if its left-hand argument is greater than or
equal to its right-hand argument but false otherwise.

B The == (equal to) operator is true if its arguments are exactly equal but false otherwise.

The !'= (not equal) operator is false if its arguments are exactly equal and true otherwise.
This operator is the same as <>.

B The === operator (identical to) is true if its two arguments are exactly equal and of the
same type.

B The == operator (not identical to) is true if the two arguments are not equal or not of the
same type.

The identical to operator (===)can, at times, be a necessary antidote to PHP’s auto-
matic type conversions. None of the following expressions will have a true value:

0 === FALSE

This behavior can be invaluable, for example, if you have a function that returns a string when it suc-
ceeds (which might be the empty string) and a FALSE value when it fails. Testing the truth of the return
value would confuse FALSE with the empty string, whereas the identical operator can distinguish them.

157

m Introducing PHP

158

Precedence and parentheses

Operator precedence rules govern the relative stickiness of operators, deciding which operators in
an expression get first claim on the arguments that surround them. You can find a complete table
of all operator precedences in the manual at www. php.net, but the important precedence rules for
arithmetic are:

m Arithmetic operators have higher precedence (that is, bind more tightly) than comparison
operators.

Comparison operators have higher precedence than assignment operators.

The *, /, and % arithmetic operators have the same precedence.

The + and - arithmetic operators have the same precedence.

The *, /, and % operators have higher precedence than + and -.

When arithmetic operators are of the same precedence, associativity is from left to right
(that is, a number will associate with an operator to its left in preference to the operator on
its right).

If you find the precedence rules difficult to remember, the next person who reads your code may
have the same problem, so feel free to parenthesize when in doubt. For example, can you easily fig-
ure out the value of this expression?

1+2*3-4-5/47%3

As it turns out, the value is 2, as you can see more easily when we add parentheses that are not,
strictly speaking, necessary:

((L +(2*3)) -4) -5/ 4)%3)

Simple Mathematical Functions

The next step up in sophistication from the arithmetic operators consists of miscellaneous functions
that perform tasks like converting between the two numerical types (which we discussed in Chapter 4)
and finding the minimum and maximum of a set of numbers (see Table 9-2).

For example, the result of the following expression:

min(3, abs(-3), max(round(2.7), ceil(2.3), floor(3.9)))

is 3, because the value of every function call is also 3.

Learning PHP Number Handling

TABLE 9-2

Simple Math Functions

Function Behavior

floor() Takes a single argument (typically a double) and returns the largest integer that is less
than or equal to that argument.

ceil() Short for ceiling — takes a single argument (typically a double) and returns the smallest
integer that is greater than or equal to that argument.

round() Takes a single argument (typically a double) and returns the nearest integer. If the
fractional part is exactly 0.5, it returns the nearest even number.

abs() Short for absolute value — if the single numerical argument is negative, the
corresponding positive number is returned; if the argument is positive, the argument
itself is returned.

min() Takes any number of numerical arguments (but at least one) and returns the smallest of
the arguments.

max () Takes any number of numerical arguments (but at least one) and returns the largest of
the arguments.

Randomness

PHP’s functions for generating pseudo-random numbers are summarized in Table 9-3. (If you are
new to random number generation and are wondering what the pseudo is all about, please see the
accompanying sidebar.)

There are two random number generators (invoked with rand() and mt_rand(), respectively),
each with the same three associated functions: a seeding function, the random number function
itself, and a function that retrieves the largest integer that might be returned by the generator.

The particular pseudo-random function that is used by rand () may depend on the particular
libraries that PHP was compiled with. By contrast, the mt_rand () generator always uses the same
random function (the Mersenne Twister), and the author of mt_rand()’s online documentation
argues that it is also faster and “more random” (in a cryptographic sense) than rand (). We have no
reason to believe that this is not correct, so we prefer mt_rand() to rand().

159

m Introducing PHP

TABLE 9-3

Random Number Functions

Function Behavior
srand() Takes a single positive integer argument and seeds the random number generator with it.
rand() If called with no arguments, returns a “random” number between 0 and RAND_MAX

(which can be retrieved with the function getrandmax()). The function can also be
called with two integer arguments to restrict the range of the number returned — the
first argument is the minimum and the second is the maximum (inclusive).

getrandmax()

Returns the largest number that may be returned by rand (). This number is limited to
32768 on Windows platforms.

mt_srand()

Like srand (), except that it seeds the “better” random number generator.

mt_rand()

Like rand (), except that it uses the “better” random number generator.

mt_
getrandmax()

Returns the largest number that may be returned by mt_rand ().

On some PHP versions and some platforms, you can apparently get seemingly random
numbers from rand () and mt_rand() without seeding first — this should not be relied
upon, however, both for reasons of portability and because the unseeded behavior is not guaranteed.

Seeding the generator

The typical way to seed either of the PHP random number generators (using mt_srand() or
srand()) looks like this:

mt_srand((double)microtime()*1000000);

This set